Bench-testing evaluation of a novel fully drug-eluting BRS

Presented by Patrick W. Serruys
National Heart Lung Institute Imperial College, London, The United Kingdom

On behalf of
Nial Bullett, Arterius Ltd, UK
Nicolas Foin, National Heart Centre, Singapore
Naveed Ahmed, Arterius Ltd, UK
Rasha Al-Lamee, Imperial College London, UK
Neil Bressloff, University of Southampton, UK
Yoshi Onuma, Erasmus Medical Centre, Netherlands
Kadem Al-Lamee, Arterius Ltd, UK

19th May Thursday, 16:30-16:38, ROOM 351
Potential conflicts of interest

Speaker's name: Patrick W. Serruys, MD, PhD

- I do not have any potential conflict of interest
If a bioresorbable scaffold is ultimately expected to have the same range of applicability as a durable metal stent, the gap in mechanical properties must be reduced.

Currently, three primary limitations exist:

- **Low tensile strength and stiffness** which require thick struts to prevent acute recoil
- **Insufficient ductility** which impacts scaffold crimping and retention on balloon catheter and limits the range of scaffold expansion during deployment
- **Instability of mechanical properties** during vessel remodeling if bioresorption is too fast
Let’s take a “crash course” of material science

- Tensile strength (Mpa)
- Tensile modulus of elasticity (GPa)
- Elongation at break (%)
- Plastic elongation
- Yield
- Ultimate Strength
- Fracture

Graph showing stress (MPa) vs elongation (%), with sections for strain hardening, necking, and fracture.
DUCTILITY is a solid material's ability to deform under tensile stress; Insufficient ductility impacts scaffold retention on balloon delivery system catheter and limits the range of scaffold expansion during deployment.

- **Minimal ductility - Brittle fracture**
- **Medium ductility**
- **Ductile but with low ultimate stress**
- **Necking+**
- **Necking+++**
Performance goal and mechanical dilemma

Current generation BRS

Greater Tensile strength

More ductility

Greater % elongation at break

Performance goal for NEW generation BRS
Mechanical properties of metal vs. PLLA

<table>
<thead>
<tr>
<th>Polymer/ metal</th>
<th>Tensile modulus of elasticity (Gpa)</th>
<th>Tensile strength (Mpa)</th>
<th>Elongation at break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(L-lactide)</td>
<td>3.1-3.7</td>
<td>60-70</td>
<td>2-6</td>
</tr>
<tr>
<td>Poly (DL-lactide)</td>
<td>3.1-3.7</td>
<td>45-55</td>
<td>2-6</td>
</tr>
<tr>
<td>Magnesium alloy</td>
<td>40-45</td>
<td>220-330</td>
<td>2-20</td>
</tr>
<tr>
<td>Cobalt chromium</td>
<td>210-235</td>
<td>1449</td>
<td>~40</td>
</tr>
</tbody>
</table>

Onuma and Serruys Circulation 2011
Polymer composition

Poly(L-lactide)
Poly (DL-lactide)
Poly (glycolide)
50/50 DL-lactide/glycolide
82/18 L-lactide/glycolide
70/30 L-Lactide/ε-caprolactone etc...

Onuma and Serruys Circulation 2011
#1 “Playing” with composition of polymers

Acute Radial Strength Comparison

In-vitro @ 37 °C

Radial Strength (psi)

Formulation 01: 4.4
Formulation 02: 5.8
Formulation 03: 6.3
Formulation 04: 5.5
Formulation 05: 6.8
Formulation 06: 6.6
Formulation 07: 10.2
Formulation 08: 10.5
Formulation 09: 7.7
Formulation 10: 7.3
Formulation 11: 13.3

Absorb: 157μ
Tube wall thickness of < 95 µm can be achieved
Scaffold tube thickness comparable to metallic DES
Oriented material properties significantly higher than un-oriented PLLA

Favourable comparison to strength of metallic materials used in stent production

<table>
<thead>
<tr>
<th>Material</th>
<th>PLLA</th>
<th>Oriented PLLA</th>
<th>Stainless Steel</th>
<th>Cobalt Chrome</th>
<th>Magnesium Alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate tensile strength (MPa)</td>
<td>~30-50</td>
<td>220-260</td>
<td>670</td>
<td>820-1200</td>
<td>280</td>
</tr>
<tr>
<td>Tensile Modulus (Gpa)</td>
<td>1.2-3.0</td>
<td>5-7</td>
<td>193</td>
<td>243</td>
<td>45</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>2-6</td>
<td>40-70</td>
<td>48</td>
<td>35-55</td>
<td>23</td>
</tr>
</tbody>
</table>
Radial force at inflexion point

Platform 1: 9.5 N
Platform 2: 11.2 N
ABSORB: 14.35 N
Metallic stent: 15.8 N

Crush resistance test

Impact of platform and polymer on radial force compared to metallic stents

Metallic stent

15.8 N
- Crush resistance with radially applied load
- ISO 25539-2 test performed by ProtomedLabs
- ArterioSorb™ has comparable radial strength to ABSORB despite a 95 µm wall thickness

<table>
<thead>
<tr>
<th>Scaffold</th>
<th>Wall Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArterioSorb™ 95 µm-3.5mm</td>
<td>95</td>
</tr>
<tr>
<td>ArterioSorb™ 120 µm-3.5mm</td>
<td>120</td>
</tr>
<tr>
<td>ABSORB 3.5mm</td>
<td>157</td>
</tr>
<tr>
<td>Xience 3.0 mm</td>
<td>81</td>
</tr>
</tbody>
</table>

Crush resistance data on file at Arterius
- Second design iterations are ArterioSorb™ 95 µm and ArterioSorb™ 120 µm strut thickness design leading to lower disruption of arterial flow and less likelihood of thrombosis
- 8 crowns, Smaller cells at the centre provide increased structural support where the stenosis is most severe and a larger dose of drug
- Wider crowns redistributes stresses during expansion
- Dual Platinum markers
- Sirolimus eluting scaffold with different size (PDLA coating)
- Spiral connectors, design provides high radial strength and yet appropriate flexibility for ease of implantation
- Design provides high radial strength and yet appropriate flexibility for ease of implantation
Bench Testing – Scaffold Crimping and Expansion

- Low crimp profiles for ArterioSorb™ compared to other bioresorbable scaffolds

![Diagram showing crimped OD (mm) for ArterioSorb™ 95 µm, ArterioSorb™ 120 µm, BVS, and DESolve.]

BVS and DESolve crossing profiles from Ormiston; EuroIntervention February 2015
Bench Testing – Scaffold Crimping and Expansion
Bench Testing – Scaffold Crimping and Expansion

 Expansion and post-dilatation

ArterioSorb™ -95µm

BVS -157µm

Crimped

3.5mm (nominal)

4.0mm (post-dilatation)

4.5mm (post-dilatation)

BVS images from Foin; EuroIntervention July 2015
Bench Testing – Drug Release

- Sirolimus / PDLA coating
- 1 µg / mm² drug loading

ArterioSorb™ and Orsiro: Data on file at Arterius
Amaranth, Xience V, BVS, DESolve: Data from literature sources
Future Directions

Future directions

Thinner strut thickness samples
 • Extensive bench-testing of a 95-120 µm strut thickness scaffold has been undertaken
 • Further pre-clinical trials of this thinner strut thickness scaffold

Clinical Trials
 • FIM: 30 patients - 6 months follow-up
 Start Q2-2017
 • CE Mark: 100 patients - 6 months and 1 year follow up
 Start Q2-2018
Thank you for your attention

Acknowledgements...

- Southampton University (UK) – Stent Design
- Nottingham University (UK) – Stent Characterization
- Bradford University (UK) – Polymer Processing
- AccelLab (Canada) – Pre-clinical trials
- Cardialysis, Erasmus University (The Netherlands) – First-in-man and CE mark clinical trials
- Innovate UK for financial support