Implementing physiology and imaging to improve outcomes in the management of multivessel disease: what to expect from SYNTAX II

Prof Adrian Banning
Oxford
I have the following potential conflicts of interest to report:

Receipt of grants / research supports: Boston Scientific, Medtronic
Receipt of honoraria or consultation fees: Abbott
SYNTAX Trial Design

- **Randomized Arms**
 - N=1800
 - CABG n=897
 - 3VD 66.3%
 - LM 33.7%
 - vs
 - TAXUS* n=903
 - 3VD 65.4%
 - LM 34.6%

- **Two Registry Arms**
 - N=1275
 - CABG n=1077
 - 5yr f/u n=649
 - PCI n=198
 - no f/u n=428

- Heart Team (surgeon & interventionalist)
 - Amenable for both treatment options
 - Stratification: LM and Diabetes
 - Amenable for only one treatment approach

- 62 EU Sites + 23 US Sites

- SYNTAX Trial Design
 - TAXUS Express
MACCE to 5 Years

- **CABG** (N=897)
- **TAXUS** (N=903)

Before 1 year
- 12.4% vs 17.8%
 - *P*=0.002

1–2 years
- 5.7% vs 8.3%
 - *P*=0.03

2–3 years
- 4.8% vs 6.7%
 - *P*=0.10

3–4 years
- 4.2% vs 7.9%
 - *P*=0.002

4–5 years
- 5.0% vs 6.3%
 - *P*=0.27

Cumulative KM Event Rate ± 1.5 SE; log-rank *P* value; *Binary rates*

ITT population

P<0.001
SYNTAX Chronology

AHA Concept Meeting
November 2003

Draft rationale
Brainstorming session
1st protocol

2004

Enrollment complete
April 2007

2005

1st patient
March 2005

2006

1 year follow-up complete

2007

2008
MACCE Components to 30 Days

CABG (n=549) | TAXUS (n=546)

| Event | 30 Day Rate | P-Value \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>1.2</td>
<td>0.08*</td>
</tr>
<tr>
<td>CVA</td>
<td>1.0</td>
<td>0.03*</td>
</tr>
<tr>
<td>MI</td>
<td>2.4</td>
<td>0.20†</td>
</tr>
<tr>
<td>Revasc.</td>
<td>1.7</td>
<td>0.02*</td>
</tr>
<tr>
<td>MACCE</td>
<td>5.2</td>
<td>0.45*</td>
</tr>
</tbody>
</table>

30 day post-procedure

chi-square test; †Fisher exact test
Stent Number and Length in SYNTAX

Multi-vessel disease: 96.2%*
3-vessel disease: 90.8%
Avg. stents per patient: 4.6 ± 2.3
Avg. stented length: 86.1 mm

Total Number of Stents Implanted per Patient

*3VD+LM/3VD+LM/2VD+LM/1VD
Source: See Glossary
Why were Syntax outcomes poor for PCI

Uniquely high risk population for an RCT
Surgical cohort – MACCE rate of at 5yrs- 27% MACCE @ 5yrs

Compared exceptional (for all the wrong reasons) PCI with routine (excellent) surgery – high rates of arterial revasc

Demonstrated that experienced PCI operators can select pts for CABG
CABG registry > CABG randomised 23%MACCE @5yrs

Single sitting revascularisation
Favoured surgery – PCI excess incomplete revasc- CTOs

Angiographic assessment rather than functional (ischaemia guided)

Stent – Express – Taxus
Linear Increase in MACCE by Number of Stents in the SYNTAX Trial

- 1.5 Stents: "Typical" Real World Average
 - 1 stent: 5.6%

- 4.6 Stents: SYNTAX Average
 - 17.8%

- Avg. in pts with 5-8+ stents in SYNTAX
 - 19.6%

Graph showing 12m MACCE Probability and 12m MACCE Rate against Number of Stents Implanted.
Since 2005 what's happened in PCI?

- Better stents
- Less stent thrombosis
- Pressure wire assessment

FAME

- **less stents better outcomes**
- Radial PCI – standard
- Better drugs - ticagralor/prasugrel/? Less reopro
- Less stent thrombosis
- Better technique
 - more complete revasc – especially CTO

Absolute MACCE outcomes in FAME

FFR-guided
So how do we improve on the PCI arm of Syntax?

Better stents
Better strategy
Better results

Synergy
iFR
iVUS

May lead to a better outcome
So how do we improve on the PCI arm of Syntax?

- Better stents
- Better strategy
- Better results

Synergy
- iFR
- iVUS

May lead to a better outcome
So are our stents better - really?

@ 5yrs less

TVF
TLF
Ischaemia
Death

5-Year Results of a Randomized Comparison of XIENCE V Everolimus-Eluting and TAXUS Paclitaxel-Eluting Stents

Final Results From the SPIRIT III Trial (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions)
SYNERGY Stent

Platform
Platinum chromium
- 74 μm (0.0029 in)
- Increased Visibility

Bioabsorbable Polymer Coating
PLGA
- Abluminal
- 4 μm thick
- 85:15 ratio
- < 4 month absorption time

Drug
Everolimus
- 100 μg/cm²
- 3 month release time

SEM of coating (x5000)
Abluminal (4 μm)
Luminal

SYNERGY 74 μm
PREMIER 81 μm
Resolute Integrity 89 μm
Xience Xpedition 81 μm

Everolimus Drug
PLGA Polymer
<table>
<thead>
<tr>
<th>Better stents</th>
<th>Synergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better strategy</td>
<td>iFR</td>
</tr>
<tr>
<td>Better results</td>
<td>iVUS</td>
</tr>
</tbody>
</table>

May lead to a better outcome
Clinical studies of FFR: FAME

- Death: ~40% decrease
 - Angio-Guided: 3%
 - FFR-Guided: 1.8%

- MI: ~35% decrease
 - Angio-Guided: 8.7%
 - FFR-Guided: 5.7%

- Repeat Revascularization: ~30% decrease
 - Angio-Guided: 9.5%
 - FFR-Guided: 6.5%

- MACE: ~35% decrease
 - Angio-Guided: 11.1%
 - FFR-Guided: 7.3%

- Death/MI: p=0.04
- MACE: p=0.02
Functional SYNTAX score

Reclassifies 1/3 patients
So how do we improve on the PCI arm of Syntax?

Better stents Synergy
Better strategy iFR
Better results iVUS

May lead to a better outcome
Minimize geographic miss
Optimize expansion
modified MUSIC criteria
SYNTAX Trial II

Inclusion: All-Comers, angiographic, de-novo 3-vessel disease without left main involvement (visual % diameter stenosis)

- Pre-stratify Low (0-22) anatomical SYNTAX Score
- Pre-stratify Interm (23-32) anatomical SYNTAX Score
- Pre-stratify High (≥33) anatomical SYNTAX Score

Heart Team Discussion

- Confirm SYNTAX Score II calculation, and that recruitment of patients for PCI is based on safety (long term mortality comparisons between CABG and PCI)

SYNTAX Score II

- Allows PCI as an alternative to CABG
- Can 'equivalent' anatomical revascularisation be achieved*
 > *Surgeon and interventional cardiologist in agreement

Patient ‘Signed Off’ by Heart Team for PCI

- SYNTAX Score II
 - **Favours CABG***

 > *Index revascularisation procedure type collected (CABG, PCI or medical). One year vital status collected (OPTIONAL).
SYNTAX Score II normogram

SYNTAX Score II questions and calculator outputs:

(A)
Anatomical SYNTAX (points): 48
Age (years): 74
CrCl (ml/min): 49
LVEF (%): 50
Left Main: No
Sex: Female
COPD: No
PVD: No
SSII PCI (points): 51
SSII CABG (points): 28
4-year predicted mortality PCI (%): 33
4-year predicted mortality CABG (%): 6
Treatment recommendation: CABG

(B)
Anatomical SYNTAX (points): 16
Age (years): 75
CrCl (ml/min): 62
LVEF (%): 70
Left Main: No
Sex: Male
COPD: Yes
PVD: Yes
SSII PCI (points): 48
SSII CABG (points): 60
4-year predicted mortality PCI (%): 28
4-year predicted mortality CABG (%): 57
Treatment recommendation: PCI

(C)
Anatomical SYNTAX (points): 20
Age (years): 49
CrCl (ml/min): 99
LVEF (%): 55
Left Main: No
Sex: Male
COPD: No
PVD: No
SSII PCI (points): 19
SSII CABG (points): 12
4-year predicted mortality PCI (%): 3
4-year predicted mortality CABG (%): 2
Treatment recommendation: CABG or PCI
PCI Procedure Flowchart

Patient “Signed-off” by the Heart Team for PCI

iFR in all intended to treat vessels

iFR < 0.86*

FFR ≤ 0.80

Implantation of SYNERGY™ stent(s)

Optimization by IVUS guidance (modified MUSIC Criteria)

Optimal medical therapy with strict LDL control (≤ 1.8mmol/L)

iFR 0.86 – 0.93

FFR

iFR > 0.93

FFR > 0.80

No stent implantation in lesion

* Consider FFR pullback with sequential lesions
- 2.5 x 15 mm balloon
- 3.0 x 32 mm Synergy stent
- 3.5 mm NC balloon postdilation
2.5 x 15 mm balloon

3.0 x 32 mm Synergy stent
- Failed Antegrade approach
 (Pilot 200, Fielder XT, Confianza Pro, Gaia II supported by Corsair)

- Predilation with 2.5 x 12 mm balloon
- 3.0 x 20 mm Synergy stent
- Final result to RCA
Retrograde approach

(Sion Black supported by Corsair pushed into Guideliner Exchange with RG3 300 cm wire)
Predilation with 2.0x20 mm balloon

Synergy 3.5 x 38 mm stent

Postdilation 3.5 x 20 mm NC balloon
Further postdilation with 3.5 mm NC balloon at high pressure

“It aint over till its over”
20 Participating Sites

UK, Spain, Netherlands, Poland

Belfast Health & Social Care Trust
The Royal Infirmary of Edinburgh
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
Erasmus MC, Rotterdam
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Erasmus MC, Rotterdam
Imperial College London
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Sussex University Hospitals
John Radcliffe Hospital, Oxford
Hospital Marqués de Valdecilla, Santander
Liverpool Heart and Chest Hospital
Freeman Hospital, Newcastle
Manchester Royal Infirmary
Papworth Hospital, Cambridge
Imperial College London
Academic Medical Center, Amsterdam
Brighton & Susse
Methods

Primary Endpoint

• **Primary Endpoint:** MACCE at 1 year follow-up
 – A composite of all-cause death, stroke, myocardial infarction or all-cause revascularization compared to the PCI arm of the SYNTAX I trial
 – To allow comparison, MACCE was adjudicated using SYNTAX I trial definitions.
 • Of note, periprocedural MI was defined as CK-MB ≥ 5xULN (Troponin ≥ 35ULN) *and* new pathological Q-waves in the ECG.
Methods
Design and Eligibility

• Multicenter, prospective, single-arm, open-label trial of patients with *de-novo* 3-vessel disease without left-main stem involvement

• Patients were included if the SYNTAX score II recommended either PCI or equipoise between PCI and CABG, based on the predicted mortalities at 4 years
 – The heart team can overrule the score recommendation

• Any anatomic SYNTAX score eligible for enrollment (*including* SYNTAX ≥ 33)

• The control group was created by selecting from the 3VD patients in the PCI arm of the SYNTAX I trial (n=546) those with a SYNTAX score II recommendation for PCI or Equipoise (PCI or CABG)
<table>
<thead>
<tr>
<th></th>
<th>Syntax PCI arm (n=315)</th>
<th>SYNTAX II trial (n=454)</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNTAX Score II PCI</td>
<td>30.6±8.7</td>
<td>30.2±8.7</td>
<td>-0.4 [-1.7, 0.8]</td>
</tr>
<tr>
<td>SYNTAX Score II CABG</td>
<td>29.1±9.6</td>
<td>29.1±10.4</td>
<td>-0.0 [-1.5, 1.4]</td>
</tr>
<tr>
<td>4y predicted mortality PCI (%)</td>
<td>9.2±8.7</td>
<td>9.0±8.8</td>
<td>-0.3 [-1.5, 1.0]</td>
</tr>
<tr>
<td>4y predicted mortality CABG (%)</td>
<td>8.5±8.1</td>
<td>9.0±9.3</td>
<td>0.5 [-0.8, 1.8]</td>
</tr>
</tbody>
</table>
Baseline Demographics

<table>
<thead>
<tr>
<th></th>
<th>Syntax PCI arm (n=315)</th>
<th>SYNTAX II trial (n=454)</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>66.7±9.1</td>
<td>66.7±9.7</td>
<td>-0.0 [-1.4, 1.4]</td>
</tr>
<tr>
<td>Male</td>
<td>93.0%</td>
<td>93.2%</td>
<td>0.1% [-3.5%, 3.8%]</td>
</tr>
<tr>
<td>Body-mass index</td>
<td>28.2±4.4</td>
<td>28.9±4.7</td>
<td>0.7 [0.0, 1.4]</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>29.2%</td>
<td>30.4%</td>
<td>1.2% [-5.4%, 7.8%]</td>
</tr>
<tr>
<td>Insulin treated</td>
<td>10.5%</td>
<td>8.5%</td>
<td>-2.0% [-6.2%, 2.3%]</td>
</tr>
<tr>
<td>Oral medication only</td>
<td>16.8%</td>
<td>19.7%</td>
<td>2.9% [-2.7%, 8.4%]</td>
</tr>
<tr>
<td>Diet only</td>
<td>1.9%</td>
<td>2.0%</td>
<td>0.1% [-1.9%, 2.1%]</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>17.8%</td>
<td>14.7%</td>
<td>-3.1% [-8.5%, 2.3%]</td>
</tr>
<tr>
<td>Previous Myocardial infarction</td>
<td>28.7%</td>
<td>12.5%</td>
<td>-16.2% [-22.1%, -10.3%]</td>
</tr>
<tr>
<td>Previous Stroke</td>
<td>NA</td>
<td>5.6%</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>73.4%</td>
<td>77.0%</td>
<td>3.6% [-2.7%, 9.9%]</td>
</tr>
</tbody>
</table>
Baseline Demographics

<table>
<thead>
<tr>
<th></th>
<th>Syntax PCI arm (n=315)</th>
<th>SYNTAX II trial (n=454)</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNTAX Score</td>
<td>22.8±8.7</td>
<td>20.3±6.4</td>
<td>-2.5 [-3.6, -1.5]</td>
</tr>
<tr>
<td>Peripheral Vascular Disease</td>
<td>9.5%</td>
<td>7.7%</td>
<td>-1.8% [-5.9%, 2.3%]</td>
</tr>
<tr>
<td>COPD</td>
<td>12.7%</td>
<td>10.8%</td>
<td>-1.9% [-6.5%, 2.8%]</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>74.4%</td>
<td>77.1%</td>
<td>2.8% [-3.4%, 9.0%]</td>
</tr>
<tr>
<td>Creatinine Clearance (ml/min)</td>
<td>77.6±15.3</td>
<td>75.0±16.6</td>
<td>-2.7 [-5.0, -0.3]</td>
</tr>
<tr>
<td>Clinical Presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silent Ischemia</td>
<td>7.9%</td>
<td>5.3%</td>
<td>-2.6% [-6.2%, 1.0%]</td>
</tr>
<tr>
<td>Stable angina</td>
<td>61.6%</td>
<td>68.4%</td>
<td>6.9% [-0.0%, 13.7%]</td>
</tr>
<tr>
<td>Unstable angina</td>
<td>25.1%</td>
<td>25.8%</td>
<td>0.7% [-5.6%, 7.0%]</td>
</tr>
<tr>
<td>No angina</td>
<td>5.4%</td>
<td>0.4%</td>
<td>-5.0% [-7.5%, -2.4%]</td>
</tr>
<tr>
<td>Ejection Fraction (%)</td>
<td>49.1±3.1</td>
<td>49.2±3.3</td>
<td>0.0 [-0.4, 0.5]</td>
</tr>
</tbody>
</table>
Procedural Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Syntax PCI arm (n=315)</th>
<th>SYNTAX II trial (n=454)</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N of Lesions (Anatomical Syntax score)</td>
<td>4.3±1.3</td>
<td>4.2±1.2</td>
<td>-0.2 [-0.34, 0.02]</td>
</tr>
<tr>
<td>N of Lesions intended to be treated</td>
<td>3.7±1.7</td>
<td>3.5±1.0</td>
<td>-0.2 [-0.5, 0.1]</td>
</tr>
<tr>
<td>iFR/FFR pre-procedure / per patient</td>
<td>NA</td>
<td>96.2%</td>
<td></td>
</tr>
<tr>
<td>iFR/FFR pre-procedure / per lesion</td>
<td>NA</td>
<td>75.8%</td>
<td></td>
</tr>
<tr>
<td>N of Treated Lesions</td>
<td>3.2±1.5</td>
<td>2.6±1.0</td>
<td>-0.6 [-0.9, -0.4]</td>
</tr>
<tr>
<td>Mean N of stents per patient</td>
<td>4.0±2.0</td>
<td>3.8±2.0</td>
<td>-0.2 [-0.5, 0.1]</td>
</tr>
<tr>
<td>Mean stent length (mm)</td>
<td>18.8±7.0</td>
<td>24.4±9.2</td>
<td>5.6 [5.0, 6.2]</td>
</tr>
<tr>
<td>Total stent length (mm)</td>
<td>74.9±41.9</td>
<td>92.9±53.9</td>
<td>18.0 [10.8, 25.2]</td>
</tr>
<tr>
<td>IVUS post performed / per patient</td>
<td>NA</td>
<td>96.6%</td>
<td></td>
</tr>
<tr>
<td>IVUS post performed / per lesion</td>
<td>NA</td>
<td>69.6%</td>
<td></td>
</tr>
</tbody>
</table>
Anatomic Target lesions (n=1556) (3.5 lesions/patient)
- SYNTAX score revised by the operator (As described in the eCRF)

- iFR performed
 - (n=1149; 74%)
 - <0.86
 - (n=602, 52%)
 - FFR performed
 - (n=16, 3%)
 - ≤0.80
 - (n=12)
 - Treated
 - (n=599)
 - 99.5%
 - >0.80
 - (n=4)
 - >0.86
 - (n=264, 23%)
 - FFR performed
 - (n=252, 95%)
 - ≤0.80
 - (n=164)
 - 65%
 - Treated
 - (n=178)
 - 67%
 - >0.80
 - (n=88)
 - 35%
 - >0.93
 - (n=283, 25%)
 - FFR performed
 - (n=42, 15%)
 - ≤0.80
 - (n=20)
 - Treated
 - (n=178)
 - 67%
 - >0.80
 - (n=22)
 - Treated
 - (n=25)
 - 9%
73% (n=839) of lesions assessed without adenosine
Anatomic lesions intended to be treated before functional assessment
n=1553 lesions – 3.5 lesions/patient

Treated lesions (n=1169)
- iFR/FFR negative (n=351)
- Failed/Not attempted CTO (n=16)
- Diffuse disease/small vessel (n=8)
- Failed PCI (non-CTO) (n=4)
- Other (n=5)

75%
23%
1%
1%

Treated lesions (n=1169 lesions) – (2.6 lesions/patient)
Conclusions

• In comparison with the SYNTAX trial, in the SYNTAX II trial we observed:
 – Less lesions treated as a result of functional assessment
 – Longer stents used (availability of 38 mm SYNERGY™)
 – More stents per lesion
 – More complete revascularisation

• Staged PCI procedures were frequently used
Conclusion (2)

• iFR/FFR and IVUS guided PCI for multivessel coronary disease with SYNERGY™ stent (**SYNTAX II strategy**) results in lower MI and stent thrombosis rates at 30 days when compared to the historic control of the SYNTAX trial

• The primary endpoint of MACCE at 1 year will provide a better understanding of the benefit of the **SYNTAX II strategy**
 – European Cardiac Society 2017