The Impact of Bicuspid Aortic Valve Morphology on Outcomes After TAVI

Sung-Han Yoon, MD
On Behalf of Bicuspid AS TAVR Registry
Speaker's name:

☐ I do not have any potential conflict of interest
Background

- TAVI indication is expanding into a lower-risk population
- The prevalence of bicuspid aortic valve is higher in a younger population
- Bicuspid AS has been excluded from randomized trials
- There is limited data assessing the outcomes of TAVI in Bicuspid AS
Outcomes in Transcatheter Aortic Valve Replacement for Bicuspid Versus Tricuspid Aortic Valve Stenosis

Sung-Han Yoon, MD,a Sabine Bleiziffer, MD,b Ole De Backer, MD,c Victoria Delgado, MD,d Takahide Arai, MD,e Johannes Ziegelmueller, MD,b Marco Barbanti, MD,f Rahul Sharma, MD,a Gidon Y. Perlman, MD,g Omar K. Khaliq, MD,h Erik W. Holy, MD,i Smriti Saraf, MD,j Florian Deuschl, MD,k Buntaro Fujita, MD,l Philipp Ruile, MD,m Franz-Josef Neumann, MD,n Gregor Pache, MD,n Masao Takahashi, MD,o Hidehiro Kaneko, MD,p Tobias Schmidt, MD,q Yohei Ohno, MD,s Niklas Schofer, MD,k William K.F. Kong, MD,d,r Edgar Tay, MD,r Daisuke Sugiyama, MD,b Hiroyuki Kawamori, MD,a Yoshio Maeno, MD,a Yigal Abramowitz, MD,a Tarun Chakravarty, MD,a Mamoo Nakamura, MD,a Shingo Kuwata, MD,t Gerald Yong, MD,u Hsien-Li Kao, MD,v Michael Lee, MD,w Hyo-Soo Kim, MD,x Thomas Modine, MD,y S. Chiu Wong, MD,z Francesco Bedgoni, MD,aa Luca Testa, MD,aa Emmanuel Teiger, MD,d Christian Butter, MD,p Stephan M. Ensminger, MD,t Ulrich Schaefer, MD,k Danny Dvir, MD,g Philipp Blanke, MD,g Jonathon Leipsic, MD,g Fabian Nietlispach, MD,t Mohamed Abdel-Wahab, MD,t Bernard Chevalier, MD,e Corrado Tamburino, MD,f David Hildick-Smith, MD,j Brian K. Whisenant, MD,bb Seung-Jung Park, MD,cc Antonio Colombo, MD,dd Azeem Latib, MD,dd Susheel K. Kodali, MD,h Jeroen J. Bax, MD,d Lars Søndergaard, MD,f John G. Webb, MD,e Thierry Lefèvre, MD,e Martin B. Leon, MD,h Raj Makkar, MDa
Study Design

Exclusion
- 15 patients with missing data

Bicuspid AS (n = 561)

Exclusion
- 1330 patients with missing data

Tricuspid AS (n = 4546)

Bicuspid AS (n = 576)

Tricuspid AS (n = 5876)

Propensity-Score Matching

Bicuspid AS (n = 546)

Tricuspid AS (n = 546)
Procedural Outcomes
Early Generation Devices

- **Aortic Root Injury**: 2.2% (Bicuspid AS) vs. 0.0% (Tricuspid AS)
- **Second Valve Implantation**: 7.2% (Bicuspid AS) vs. 2.2% (Tricuspid AS)
- **Paravalvular Leak**: 15.9% (Bicuspid AS) vs. 10.3% (Tricuspid AS)
- **New Pacemaker**: 14.7% (Bicuspid AS) vs. 13.7% (Tricuspid AS)

- *p = 0.02* (Aortic Root Injury)
- *p = 0.003* (Second Valve Implantation)
- *p = 0.03* (Paravalvular Leak)
- *p = 0.72* (New Pacemaker)

(n = 320) (Bicuspid AS) vs. *(n = 321)* (Tricuspid AS)
Procedural Outcomes
New Generation Devices

Incidence (%)

Aortic Root Injury
Second Valve Implantation
Paravalvular Leak
New Pacemaker

Bicuspid AS
Tricuspid AS

(n = 226) (n = 225)

0.9 0.0
1.3 0.4
2.7 1.8

p = 0.50 p = 0.62 p = 0.53 p = 0.69
1-year All-cause Mortality
Overall Propensity Matched Cohort

![Graph showing 1-year All-cause Mortality for Bicuspid AS and Tricuspid AS. The graph includes a line chart with two lines representing the mortality rates for each group, and a table showing the number of at-risk patients at different time points. The p-value for the difference in mortality rates is 0.28.]
We aimed to investigate the association between Bicuspid AS morphology and clinical outcomes after TAVI.
Methods

- The Bicuspid AS TAVR multicenter registry was used to evaluate procedural and clinical outcomes.
- Bicuspid aortic valve morphology was defined by independent analysis of computed tomography images.
- Procedural and clinical outcomes were assessed according to VARC-2 criteria.
Participating Institutions (n=33)

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution (cases)</th>
<th>Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>Cedars-Sinai Heart Institute (110)</td>
<td>Rahul Sharma, Tarun Chakravarty, Raj Makkar</td>
</tr>
<tr>
<td>France</td>
<td>Institute Cardiovasculaire Paris Sud (62)</td>
<td>Takahide Arai, Bernard Chevalier, Thierry Lefevre</td>
</tr>
<tr>
<td>Germany</td>
<td>German Heart Center (46)</td>
<td>Johannes Ziegelmueller, Sabine Bleiziffer</td>
</tr>
<tr>
<td>Canada</td>
<td>St. Paul’s Hospital (36)</td>
<td>Danny Dvir, Philipp Blanke, Jonathon Leipsic, John G. Webb</td>
</tr>
<tr>
<td>U.S.</td>
<td>Columbia University Medical Center (26)</td>
<td>Omar Khalique, Susheel Kodali, Martin Leon</td>
</tr>
<tr>
<td>Denmark</td>
<td>Rigshospitalet University Hospital (26)</td>
<td>Ole de Backer, Lars Sondergaard</td>
</tr>
<tr>
<td>Germany</td>
<td>Heart Center Brandenburg (20)</td>
<td>Hidehiro Kaneko, Christian Butter</td>
</tr>
<tr>
<td>Italy</td>
<td>San Raffaele Scientific Institute (19)</td>
<td>Azeem Latib, Antonio Colombo</td>
</tr>
<tr>
<td>Germany</td>
<td>University Freiburg (18)</td>
<td>Philipp Ruile, Gregor Pache, Franz-Josef</td>
</tr>
<tr>
<td>Korea</td>
<td>Asan Medical Center (18)</td>
<td>Seung-Jung Park</td>
</tr>
<tr>
<td>Germany</td>
<td>Hamburg University Heart Center (17)</td>
<td>Florian Deuschl, Niklas Schofer, Ulrich Schaefer</td>
</tr>
<tr>
<td>U.S.</td>
<td>Intermountain Heart Institute (17)</td>
<td>Brian K. Whisenant</td>
</tr>
<tr>
<td>France</td>
<td>Centre Hospitalier Unicersitaire Henri Modor (16)</td>
<td>Masao Takahashi, Emmanuel Teiger</td>
</tr>
<tr>
<td>Germany</td>
<td>Heart Center, Segeberger Klinken (15)</td>
<td>Erik W. Holy, Mohamed Abdel-Wahab</td>
</tr>
<tr>
<td>Netherland</td>
<td>Leiden University Medical Center (14)</td>
<td>William K.F. Kong, Victoria Delgado, Jeroen J. Bax</td>
</tr>
<tr>
<td>Italy</td>
<td>IRCCS Pol SanDonato (14)</td>
<td>Francesco Bedgoni, Luca Testa</td>
</tr>
<tr>
<td>U.K.</td>
<td>Sussex Cardiac Center (13)</td>
<td>Smriti Saraf, David Hildick-Smith</td>
</tr>
<tr>
<td>Italy</td>
<td>Ferrarotto Hospital (12)</td>
<td>Marco Barbanti, Corrado Tamburino</td>
</tr>
<tr>
<td>Germany</td>
<td>Rahr-University Bochum (10)</td>
<td>Buntaro Fujita, Stephan M. Ensminger</td>
</tr>
<tr>
<td>Germany</td>
<td>Asklepios Klink St. Georg (9)</td>
<td>Tobias Schmidt</td>
</tr>
<tr>
<td>France</td>
<td>Hospital Cardiologique Lille (8)</td>
<td>Thomas Modine</td>
</tr>
<tr>
<td>U.S.</td>
<td>New York-Presbyterian Hospital (8)</td>
<td>S. Chiu Wong</td>
</tr>
<tr>
<td>Switzerland</td>
<td>University Hospital Zurich (5)</td>
<td>Fabian Nietlispach</td>
</tr>
</tbody>
</table>
Study Design

Bicuspid AS with MDCT available (n = 418)

Raphe?

No

Type 0 (No Raphe)
 n = 62

Yes

Calcified raphe?

No

Type 1 (Raphe)
 n = 130

Yes

Type 1 (Calcified Raphe)
 n = 226
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Type 0 No raphe (n = 62)</th>
<th>Type 1 Raphe (n = 130)</th>
<th>Type 1 Calcified raphe (n = 226)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>75 ± 8</td>
<td>77 ± 9</td>
<td>76 ± 9</td>
<td>0.18</td>
</tr>
<tr>
<td>Male</td>
<td>65%</td>
<td>56%</td>
<td>66%</td>
<td>0.15</td>
</tr>
<tr>
<td>NYHA class III / IV</td>
<td>69%</td>
<td>80%</td>
<td>79%</td>
<td>0.24</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>50.9 ± 16.1</td>
<td>54.1 ± 15.4</td>
<td>50.8 ± 15.9</td>
<td>0.15</td>
</tr>
<tr>
<td>Mean gradient, mmHg</td>
<td>52.8 ± 21.9</td>
<td>48.9 ± 17.2</td>
<td>50.6 ± 17.6</td>
<td>0.39</td>
</tr>
<tr>
<td>STS score, %</td>
<td>4.5 ± 5.6</td>
<td>4.1 ± 3.2</td>
<td>5.2 ± 5.3</td>
<td>0.09</td>
</tr>
<tr>
<td>Logistic EuroSCORE, %</td>
<td>12.7 ± 11.8</td>
<td>15.4 ± 11.1</td>
<td>14.3 ± 12.3</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Baseline Characteristics (cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Type 0 No raphe (n = 62)</th>
<th>Type 1 Raphe (n = 130)</th>
<th>Type 1 Calcified raphe (n = 226)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>24%</td>
<td>22%</td>
<td>24%</td>
<td>0.95</td>
</tr>
<tr>
<td>Hypertension</td>
<td>68%</td>
<td>74%</td>
<td>74%</td>
<td>0.63</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>21%</td>
<td>24%</td>
<td>20%</td>
<td>0.68</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>21%</td>
<td>19%</td>
<td>13%</td>
<td>0.23</td>
</tr>
<tr>
<td>Prior PCI</td>
<td>16%</td>
<td>19%</td>
<td>21%</td>
<td>0.67</td>
</tr>
<tr>
<td>Prior CABG</td>
<td>15%</td>
<td>12%</td>
<td>11%</td>
<td>0.70</td>
</tr>
<tr>
<td>Prior CVA</td>
<td>19%</td>
<td>14%</td>
<td>17%</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Procedural Data

<table>
<thead>
<tr>
<th></th>
<th>Type 0 No raphe (n = 62)</th>
<th>Type 1 Raphe (n = 130)</th>
<th>Type 1 Calcified raphe (n = 226)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfemoral access</td>
<td>81%</td>
<td>88%</td>
<td>89%</td>
<td>0.18</td>
</tr>
<tr>
<td>Device</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early generation devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoreValve</td>
<td>69%</td>
<td>50%</td>
<td>53%</td>
<td>0.03</td>
</tr>
<tr>
<td>Sapien XT</td>
<td>23%</td>
<td>32%</td>
<td>29%</td>
<td>0.44</td>
</tr>
<tr>
<td>New generation devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapien 3</td>
<td>31%</td>
<td>50%</td>
<td>47%</td>
<td>0.03</td>
</tr>
<tr>
<td>Lotus</td>
<td>8%</td>
<td>7%</td>
<td>5%</td>
<td>0.55</td>
</tr>
<tr>
<td>Evolut R</td>
<td>0%</td>
<td>3%</td>
<td>4%</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Procedural Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Type 0 No raphe (n = 62)</th>
<th>Type 1 Raphe (n = 130)</th>
<th>Type 1 Calcified raphe (n = 226)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device success</td>
<td>87.1%</td>
<td>90.8%</td>
<td>83.6%</td>
<td>0.17</td>
</tr>
<tr>
<td>Second valve implantation</td>
<td>6.5%</td>
<td>1.5%</td>
<td>5.8%</td>
<td>0.14</td>
</tr>
<tr>
<td>Conversion to surgery</td>
<td>1.6%</td>
<td>1.5%</td>
<td>2.7%</td>
<td>0.89</td>
</tr>
<tr>
<td>Coronary obstruction</td>
<td>3.2%</td>
<td>0.8%</td>
<td>0.9%</td>
<td>0.29</td>
</tr>
<tr>
<td>New permanent pacemaker</td>
<td>11.3%</td>
<td>16.2%</td>
<td>19.0%</td>
<td>0.34</td>
</tr>
<tr>
<td>PVL ≥ moderate</td>
<td>6.5%</td>
<td>7.7%</td>
<td>11.1%</td>
<td>0.40</td>
</tr>
<tr>
<td>Annulus rupture</td>
<td>0.0%</td>
<td>0.8%</td>
<td>2.7%</td>
<td>0.36</td>
</tr>
<tr>
<td>Procedure-related mortality</td>
<td>1.6%</td>
<td>0.0%</td>
<td>2.7%</td>
<td>0.17</td>
</tr>
</tbody>
</table>
30-day Clinical Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Type 0 No raphe (n = 62)</th>
<th>Type 1 Raphe (n = 130)</th>
<th>Type 1 Calcified raphe (n = 226)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day mortality</td>
<td>1.6%</td>
<td>0.0%</td>
<td>6.2%</td>
<td>0.003</td>
</tr>
<tr>
<td>Stroke</td>
<td>0.0%</td>
<td>3.1%</td>
<td>2.2%</td>
<td>0.52</td>
</tr>
<tr>
<td>Life-threatening bleeding</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.7%</td>
<td>0.13</td>
</tr>
<tr>
<td>Major vascular complication</td>
<td>0.0%</td>
<td>2.3%</td>
<td>4.9%</td>
<td>0.15</td>
</tr>
<tr>
<td>AKI (stage 2 or 3)</td>
<td>1.6%</td>
<td>2.3%</td>
<td>1.8%</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Outcomes According to Device Type
Paravalvular Leak

- **CoreValve**
 - No Raphe: 6.9%
 - Raphe: 16.7%
 - Calcified Raphe: 29.6%
 - \(p = 0.017 \)\(^{(N = 107)}\)

- **Sapien XT**
 - No Raphe: 14.3%
 - Raphe: 12.2%
 - Calcified Raphe: 9.2%
 - \(p = \text{NS} \)\(^{(N = 120)}\)

- **Sapien 3**
 - No Raphe: 0.0%
 - Raphe: 1.9%
 - Calcified Raphe: 1.2%
 - \(p = \text{NS} \)\(^{(N = 152)}\)
Second Valve Implantation

<table>
<thead>
<tr>
<th>Valve Type</th>
<th>Incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoreValve</td>
<td>13.8</td>
</tr>
<tr>
<td>Sapien XT</td>
<td>8.3</td>
</tr>
<tr>
<td>Sapien 3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

- **CoreValve**: (N = 107)
- **Sapien XT**: (N = 120)
- **Sapien 3**: (N = 152)

p = NS
Annulus Rupture

- CoreValve (N = 107)
- Sapien XT (N = 120)
- Sapien 3 (N = 152)

Incidence (%): No Raphe, Raphe, Calcified Raphe

- p = NS
- p = NS
- p = NS
New Permanent Pacemaker

Incidence (%)

- No Raphe
- Raphe
- Calcified Raphe

- CoreValve: 6.9, 20.8, 29.6
- Sapien XT: 14.3, 4.9, 12.3
- Sapien 3: 21.4, 17.3, 16.3

p = 0.017

p = NS

(N = 107) (N = 120) (N = 152)
Device Success

CoreValve
- No Raphe: 82.8%
- Raphe: 75.0%
- Calcified Raphe: 59.3%
 - Sample Size: (N = 107)

Sapien XT
- No Raphe: 78.6%
- Raphe: 87.8%
- Calcified Raphe: 86.2%
 - Sample Size: (N = 120)

Sapien 3
- No Raphe: 100.0%
- Raphe: 98.1%
- Calcified Raphe: 96.5%
 - Sample Size: (N = 152)

Statistical Significance:
- No Raphe vs. Calcified Raphe: *p* = 0.029
- Other comparisons: *p* = NS
30-day Mortality

Incidence (%)

CoreValve
Sapien XT
Sapien 3

No Raphe
Raphe
Calcified Raphe

CoreValve
(N = 107)
Sapien XT
(N = 120)
Sapien 3
(N = 152)

p = NS
p = 0.045
p = NS

No Raphe: 0.0%
Raphe: 7.1%
Calcified Raphe: 2.3%
1 Year Survival
Cumulative Survival at 1 Year
Overall Cohort

Overall log-rank p = 0.01

No. at Risk

<table>
<thead>
<tr>
<th>Group</th>
<th>Days</th>
<th>No at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Raphe</td>
<td>42</td>
<td>62</td>
</tr>
<tr>
<td>Raphe</td>
<td>73</td>
<td>130</td>
</tr>
<tr>
<td>Calcified Raphe</td>
<td>123</td>
<td>226</td>
</tr>
</tbody>
</table>

No Raphe: 95.0%
No Raphe: 92.2%
Calcified Raphe: 83.8%
Cumulative Survival at 1 Year
Early-generation Devices

Overall log-rank p = 0.027

No. at Risk
No Raphe 43
Raphe 65
Calcified Raphe 119

Days
No Raphe 32 27
Raphe 48 42
Calcified Raphe 82 67
Cumulative Survival at 1 Year
New-generation Devices

Overall log-rank p = 0.23

<table>
<thead>
<tr>
<th>No. at Risk</th>
<th>Days</th>
<th>Days</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Raphe</td>
<td>19</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Raphe</td>
<td>65</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Calcified Raphe</td>
<td>107</td>
<td>41</td>
<td>20</td>
</tr>
</tbody>
</table>
Conclusions

• Overall, TAVI in Bicuspid AS was safe and feasible

• Bicuspid AS with calcified raphe was associated with more frequent adverse events after TAVI when using the early generation devices

• However, when using the new generation devices, bicuspid AS with calcified raphe showed similar outcomes across raphe type

• Bicuspid AS with calcified raphe showed lower 1-year survival rate when using the early generation devices, but 1-year survival rates were similar across raphe type when using the new generation devices
Acknowledgement

Cedars-Sinai Heart Institute
Raj Makkar, MD

Institut Cardiovasculaire Paris Sud, France
Thierry Lefèvre, MD

German Heart Center Munich, Germany
Sabine Bleiziffer, MD

St. Paul’s Hospital
Danny Dvir, MD, John G. Webb, MD

Rigshospitalet University Hospital, Denmark
Lars Søndergaard, MD

Columbia University Medical Center
Susheel Kodali, MD,
Martin B. Leon

Heart Centre Brandenburg, Germany
Christian Butter, MD

San Faffaele Scientific Institute, Italy
Azeem Latib, MD

University Freiburg
Philipp Ruile, MD, Franz-Josef Neumann, MD

Asan Medical Cener, Korea
Seung-Jung Park, MD

Hamburg Heart Center, Germany
Ulrich Schaefer, MD

Intermountain Heart Institute, Utah
Brian K. Whisenant, MD

Henri Mondor University Hospital
Emanuel Teiger, MD

Heart Center, Bad Segeberg, Germany
Mohamed Abdel-Wahab, MD

Leiden University Medical Center, Netherlands
Victoria Delgado, MD, Jeroen J. Bax, MD

IRCCS Pol San Donato, Italy
Luca Testa, MD

Sussex Cardiac Center, United Kingdom
David Hildick-Smith

Ferrarotto Hospital, Italy
Marco Barbanti, MD, Corrado Tamburino, MD

Ruhr-University Bochum, Germany
Stephan M. Ensminger, MD

Asklepios Klink St. Georg
Tobias Schmidt, MD

Hospital Cardiologique Lille
Thomas Modine, MD

New York-Presbyterian Hospital, New York
S. Chiu Wong, MD

University Hospital Zurich, Switzerland
Fabian Nietlispach, MD