# 

Long-term clinical outcomes of coronary drugeluting stent with bioresorbable coating: final 5-year results of the CENTURY study

#### Branko Beleslin Clinical Center of Serbia, Belgrade, Serbia

On behalf of CENTURY investigators





x I do not have any potential conflict of interest

□ I have the following potential conflicts of interest to report:

- Honorarium:
- Institutional grant/research support:
- Consultant:
- Employment in industry:
- Owner of a healthcare company:
- Stockholder of a healthcare company:
- Other(s):



 CENTURY study is designed to evaluate the safety and performance of Ultimaster, a thin-strut cobalt-chromium sirolimus-eluting stent with an innovative abluminally, gradient coated bioresorbable polymer.

 The aim of current analysis is to assess the final 5 year results of Ultimaster DES compared with the historical data from KARE study (study of its BMS platform).

# Ultimaster vs other DESs strut and coating thickness

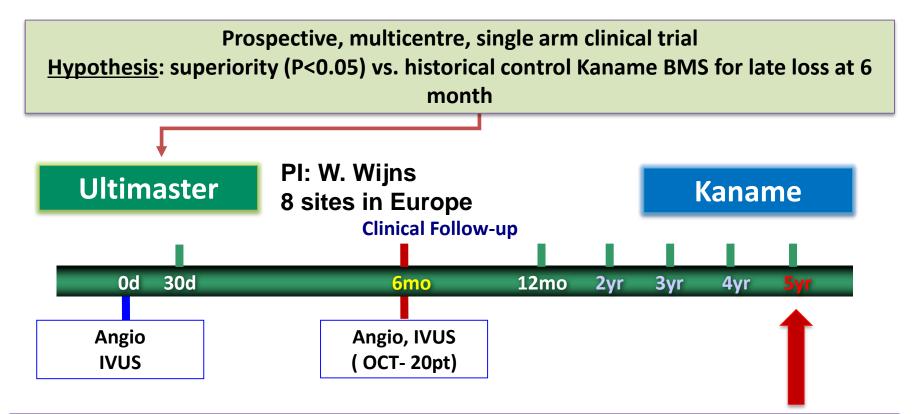
| Durable Polymer<br>Stent                 |                                      |                                   | Bioresorba<br>Ste            | Bioresorbable<br>Scaffold   |                          |                         |
|------------------------------------------|--------------------------------------|-----------------------------------|------------------------------|-----------------------------|--------------------------|-------------------------|
| Xience/Promus<br>CoCr / PtCr-EES         | Resolute<br>CoCr-ZES                 | Biomatrix<br>316L-BES             | Ultimaster<br>CoCr-SES       | Synergy<br>PtCr-EES         | Orsiro<br>CoCr-SES       | Absorb (BVS)<br>PLLA-EE |
|                                          |                                      |                                   |                              |                             |                          |                         |
| Thickness of uncoated stent (in $\mu$ m) |                                      |                                   |                              |                             |                          |                         |
| 81                                       | 91                                   | 120                               | 80                           | 74                          | 60                       | 150                     |
| Distribution ar                          | nd thickness of I                    | polymer coating                   | (in µm) & type               | of polymer                  |                          |                         |
| Conformal<br>7-8<br>Fluoro-polymer       | Conformal<br>6<br><sup>BioLinx</sup> | Abluminal<br>10<br><sub>PLA</sub> | Abluminal<br>15<br>PDLLA-PCL | Abluminal<br>4<br>PLGA, PCL | Conformal<br>4/7<br>PLLA | Conformal<br>3<br>PDLLA |

euro

PCR

Data from: Stefanini G. et al. Heart doi:10.1136/heartjnl-2012-303522; Garg, S. et al. Nat. Rev. Cardiol. 2013;10:248–60; Meredith I.T. Presented at TCT 2013; Lee Y. et al. Invasive Cardiol. 2014;26(2):41-5. (modified). \*) Orsiro strut thickness is 80  $\mu$ m for stent diameters  $\geq$  3.5 mm;

# PCR


#### **Ultimaster stent design**



| (            | Ultimaster DES                                            |
|--------------|-----------------------------------------------------------|
| Platform     | Strut thickness ( <b>80µm</b> ) Co-Cr<br>Open cell design |
| Drug Carrier | PDLLA-PCL copolymer<br>resorbed within 3-4 months         |
| Coating      | Abluminal gradient coating                                |
| Drug         | Sirolimus<br><b>3.9 µg/mm</b> stent length                |



## **CENTURY** – study design



#### **Primary endpoint: in-stent LATE LUMEN LOSS at 6 months**

Main secondary endpoints: TLF, Death&MI, ST, at 6 and 12m and yearly to 5 years Angio/IVUS: late lumen loss, BAR, neointima volume and volume obstruction



## **CENTURY study** Patient inclusion/exclusion criteria

#### Main inclusion criteria

- Up to two de-novo lesions located in two epicardial vessels
- Target lesion length <25 mm, RVD: 2.5-4.0 mm</li>

#### Main exclusion criteria

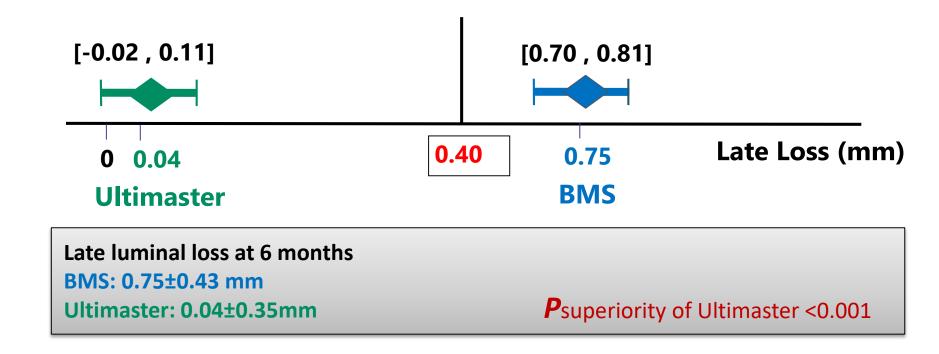
- Intolerance to common PCI associated medications, or limus like drugs
- Left Main CAD
- CTO, ostial, bifurcation, SVG lesions
- Prior PCI with stenting (within 1 month before enrolment)
- Planned major surgery within 6 m post procedure
- STEMI <72h before procedure



### **CENTURY vs KARE Study Baseline characteristics**

|                               | CENTURY<br>n=104 pts | KARE<br>n = 214 pts | P-value |
|-------------------------------|----------------------|---------------------|---------|
| Age, years (mean±SD)          | 62.3±8.2             | 62.7±11.4           | 0.72    |
| Male gender, %                | 72.4                 | 75.2                | 0.59    |
| Smoking, current, %           | 29.4                 | 30.1                | 0.49    |
| Diabetes mellitus, %          | 23.3                 | 24.3                | 0.85    |
| Dyslipidemia, %               | 76.7                 | 76.1                | 0.90    |
| History of MI, %              | 39.3                 | 39.7                | 0.94    |
| History of PCI <i>,</i> %     | 16.8                 | 26.2                | 0.06    |
| Stable angina at admission, % | 69.0                 | 70.4                | 0.92    |




### **CENTURY vs KARE Study** Lesion characteristics

|                            | CENTURY<br>n=104 pts | KARE<br>n = 214 pts  | P-value |
|----------------------------|----------------------|----------------------|---------|
| Multivessel disease, %     | 24.2                 | 25.0                 | 0.88    |
| Target vessel, %           |                      |                      | 0.49    |
| CFX<br>LAD<br>RCA          | 25.2<br>41.7<br>33.1 | 32.0<br>34.4<br>33.6 |         |
| Predilatation, %           | 98.4                 | 94.6                 | 0.11    |
| Postdilatation, %          | 27.5                 | 25.4                 | 0.69    |
| QCA baseline               | n=112 lesions        | n=216 lesions        |         |
| Minimum lumen diameter, mm | $1.17 \pm 0.38$      | $1.12 \pm 0.35$      | 0.20    |
| Diameter stenosis, %       | 57.0                 | 58.3                 | 0.34    |



Hypothesis: based upon estimated BMS Late Luminal Loss:  $0.90 \pm 0.50$ mm - 0.50mm improvement was considered as clinically significant

Late loss of 0.40 mm (0.90-0.50 mm) is considered upper limit for CENTURY study

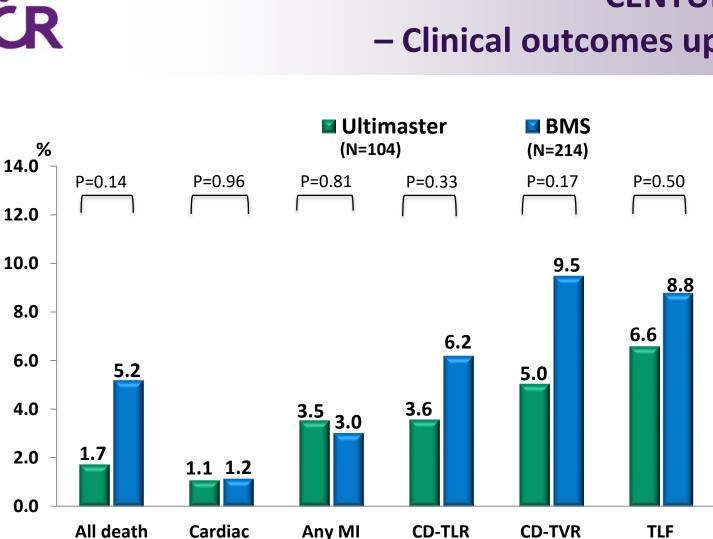


## CENTURY study Angiography and IVUS at 6 months

|                                    | CENTURY<br>n=112 Lesions | KARE<br>n=216 Lesions             | P-value |
|------------------------------------|--------------------------|-----------------------------------|---------|
| QCA at 6 month                     |                          |                                   |         |
| Diameter stenosis, %               | $11.9\pm10.4$            | 34.3 ± 15.3                       | <0.001  |
| Minimum lumen diameter, mm         | 2.55±0.51                | $\textbf{1.76} \pm \textbf{0.53}$ | <0.001  |
| Late loss in-segment, mm           | $-0.03 \pm 0.38$         | $\textbf{0.50} \pm \textbf{0.41}$ | <0.001  |
| Binary restenosis - segment, %     | 1.3                      | 18.1                              | <0.001  |
| Binary restenosis - stent, %       | 0.8                      | 16.7                              | <0.001  |
| IVUS at 6 month                    | n=41 lesions             | n=31 lesions                      |         |
| Neo-intima volume, mm <sup>3</sup> | 2.28 ± 2.89              | 41.6±23.5                         | <0.001  |
| Stent mean area obstruction, %     | $1.54\pm1.98$            | $27.2 \pm 10.0$                   | <0.001  |

Data are mean±SD or %

euro


PCR



### **CENTURY study OCT at 6 months**

| Mean strut coverage (mm)                       | 0.08±0.04 | Malapposed struts, %                  | 1.66            |
|------------------------------------------------|-----------|---------------------------------------|-----------------|
| % Covered Struts at 6 month                    | 96.2±5.4  | Malapposition volume, mm <sup>3</sup> | $1.86 \pm 6.58$ |
| Image: wide wide wide wide wide wide wide wide |           |                                       |                 |

#### CENTURY vs KARE – Clinical outcomes up to 5 years



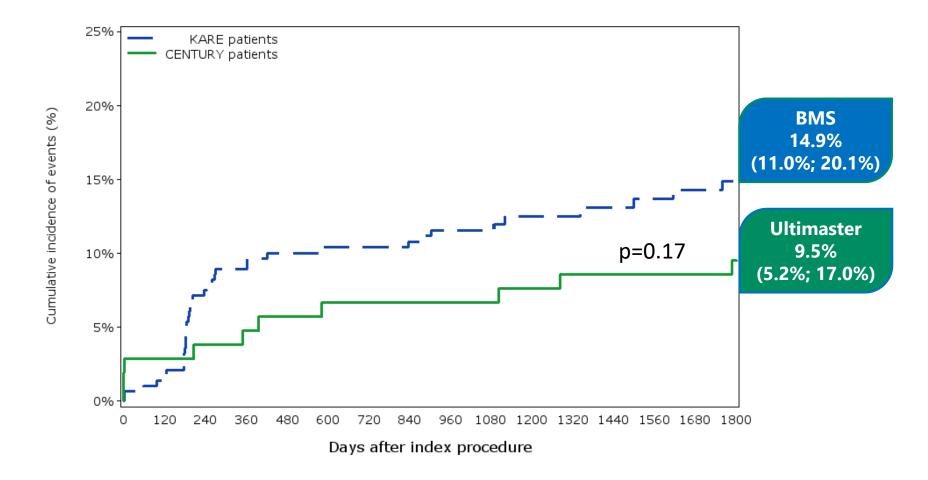
Stent thrombosis

0.0

\* 0.8

P=0.18

CD: clinically driven, TLR: target lesion revasculairzation, TVR: target vessel revascularization,


TLF: composite of cardiac death, TV related MI and CD-TLR.

\* One acute stent thrombosis due to untreated dissection

death

euro

#### **CENTURY vs KARE** Kaplan-Meier curve of TVF up to 5 years



euro

PCR

TVF: target vessel failure, composite of cardiac death, TV related MI and CD-TVR.

## CENTURY vs KARE PCR – Subgroup analysis of hazard ratio using Cox model

|                                   | н                        |                               |              |                   | nposite (TLF), Tota<br>ber of events / Nr of |                                                |              |
|-----------------------------------|--------------------------|-------------------------------|--------------|-------------------|----------------------------------------------|------------------------------------------------|--------------|
| _                                 | Ultimaster               | BMS                           | P-value      |                   | HR (95%                                      | CI)                                            | Int. P-value |
| Men                               | 6/80(7.5%)               | 26/206(12.6%)                 | 0.15         | <b>-</b>          |                                              | 0.518 [0.213;1.263] -                          |              |
| Women                             | 2/25(8.0%)               | 6/76(7.9%)                    | 0.94         | <b>-</b>          |                                              | 0.938 [0.189;4.670] -                          | 0.54         |
| Diabetes                          | 2/25(8.0%)               | 10/64(15.6%)                  | 0.27         |                   |                                              | 0.426 [0.092;1.969] -                          | 0.66         |
| No Diabetes                       | 6/80(7.5%)               | 22/218(10.1%)                 | 0.38         | ├■                |                                              | 0.667 [0.270;1.648] -                          |              |
| Multiple-Vessel Disease           | 2/22(9.1%)               | 10/79(12.7%)                  | 0.60         | <b>-</b>          |                                              | 0.663 [0.145;3.037] -                          | 0.92         |
| Single-Vessel Disease             | 6/83(7.2%)               | 22/203(10.8%)                 | 0.24         | <b>⊢</b> ■        |                                              | 0.581 [0.235;1.438] -                          | 0.92         |
| Lesion >=15mm<br>No Lesion >=15mm | 3/34(8.8%)<br>5/71(7.0%) | 9/59(15.3%)<br>23/223(10.3%)  | 0.35<br>0.29 | ⊦∎                |                                              | 0.533 [0.143;1.981] -<br>0.592 [0.225;1.562] - | 0.83         |
| RVD <=2.75mm                      | 5/59(8.5%)               | 21/163(12.9%)                 | 0.29         | <b>-</b>          |                                              | 0.589 [0.221;1.565] -                          | 7            |
| No RVD <=2.75mm                   | 3/46(6.5%)               | 11/119(9.2%)                  | 0.46         | <b>-</b>          | +1                                           | 0.615 [0.171;2.215] -                          | 0.97         |
| Stable Angina<br>No Stable Angina | 6/81(7.4%)<br>2/24(8.3%) | 14/146(9.6%)<br>18/136(13.2%) | 0.44<br>0.43 | ,∎                |                                              | 0.683 [0.261;1.787] -<br>0.553 [0.128;2.387] - | 0.79         |
|                                   |                          |                               |              | BMS higher risk   | Ultimaster Higher Risk                       |                                                |              |
|                                   |                          |                               | 0            | 0.1               | 1 1                                          | 0                                              |              |
|                                   |                          | BMS h                         | igher        | <sup>-</sup> risk | Ultir                                        | naster highe                                   | er risk      |



#### **CENTURY vs KARE DAPT up to 5 years**



#### DAPT treatment



## **CENTURY – Conclusions (1/2)**

Ultimaster DES has several distinct features that are designed to:

- ✓ Further optimize treatment and clinical outcomes of patients with coronary artery disease;
- ✓ Potentially minimize duration of DAPT.
- Ultimaster DES showed superior efficacy versus bare metal stent (historical control) by reducing late loss at 6 months by 95%.
- Long term follow-up until 5 years showed low rates of clinically indicated revascularizations of target lesion compared with its bare metal platform Kaname. The clinical safety of Ultimaster DES was also reflected by no new stent thromboses between 1 day to 5 years.



These positive results of Ultimaster DES have been confirmed in a randomized trials (CENTURY II and MASTER) including a **broader patient population,** patients with STEMI and complex lesions, as well as in a large worldwide all-comers registry (e-Ultimaster), representative of real world PCI practice. The feasibility and safety of reduced DAPT is currently being **studied** in a large, randomized, MASTER DAPT clinical trial.