Transcatheter procedures of the future; expanding the treatment options for patients with severe aortic stenosis

John Webb MD

Director interventional cardiology, St Paul’s Hospital
McLeod Professor of heart valve intervention, University of British Columbia
Medical director transcatheter heart valve program, Province of BC
Vancouver, Canada
Speaker's name: John, Webb, Vancouver, BC

☑ I have the following potential conflicts of interest to report:

Receipt of grants / research supports: Edwards Lifesciences
Receipt of honoraria or consultation fees: Edwards Lifesciences
30-day Mortality by Valve Platform in the PARTNER Trials

PARTNER IB Trial (Transfemoral)
- All-cause Mortality: 6.3%
- n = 175

PARTNER IA Trial (Overall)
- All-cause Mortality: 5.2%
- n = 344

PARTNER IIB Trial (Transfemoral)
- All-cause Mortality: 4.5%
- n = 271

PARTNER IIA Trial (Overall)
- All-cause Mortality: 3.6%
- n = 282

PARTNER II HR Trial (Overall)
- All-cause Mortality: 3.9%
- n = 1,011

PARTNER II S3i Trial (Overall)
- All-cause Mortality: 2.2%
- n = 583

All-cause Mortality in Patients
- Inoperable
- High-risk or greater
- Intermediate-risk

SAPIEN Valve
- Inoperable: 6.3%
- High-risk or greater: 5.2%
- Intermediate-risk: 4.5%

SAPIEN XT Valve
- Inoperable: 3.6%
- High-risk or greater: 3.9%
- Intermediate-risk: 2.2%

SAPIEN 3 Valve
- Inoperable: 1.1%
- High-risk or greater: 2.2%
- Intermediate-risk: 1.1%

Centre for Heart Valve Innovation
- St. Paul's Hospital, Vancouver

UBC
Stroke Rates Continue to Decline

<table>
<thead>
<tr>
<th>All-stroke (%)</th>
<th>PARTNER I B (TF)</th>
<th>PARTNER II B (TF)</th>
<th>PARTNER II B (TF)</th>
<th>PARTNER II HR (TF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAPIEN valve</td>
<td>179</td>
<td>271</td>
<td>282</td>
<td>491</td>
</tr>
<tr>
<td>SAPIEN XT valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAPIEN 3 valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3%</td>
<td>4.4%</td>
<td>4.3%</td>
<td>1.4%</td>
<td></td>
</tr>
</tbody>
</table>
Do Trial Outcomes Reflect Real World Outcomes in the US TVT Registry?

Propensity Matched - TF Patients - AT

All-cause Mortality

<table>
<thead>
<tr>
<th></th>
<th>S3i</th>
<th>S3iCAP</th>
<th>TVT-R (IR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS</td>
<td>5.19</td>
<td>4.47</td>
<td>4.44</td>
</tr>
<tr>
<td># Patients</td>
<td>652</td>
<td>652</td>
<td>1956</td>
</tr>
<tr>
<td># Sites</td>
<td>51</td>
<td>60</td>
<td>453</td>
</tr>
<tr>
<td>O:E</td>
<td>0.17</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>p-value</td>
<td>0.977</td>
<td>0.927</td>
<td></td>
</tr>
</tbody>
</table>

All Stroke

<table>
<thead>
<tr>
<th></th>
<th>S3i</th>
<th>S3iCAP</th>
<th>TVT-R (IR)</th>
</tr>
</thead>
<tbody>
<tr>
<td># Patients</td>
<td>652</td>
<td>652</td>
<td>1956</td>
</tr>
<tr>
<td># Sites</td>
<td>51</td>
<td>60</td>
<td>453</td>
</tr>
<tr>
<td>O:E</td>
<td>2.0</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>p-value</td>
<td>0.927</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lower Profile Systems Mean Fewer Vascular Problems

With Newer Valves and CT Sizing Severe Leaks Are Infrequent

PARTNER II SAPIEN 3: High and Intermediate risk, 30 day TTE

- Severe: 0.1%
- Moderate: 40.7%
- Mild: 55.9%
- None/Trace: 3.4%

1 in 1,000
Durability: 10 years after TAVI

Mean gradient 11 mmHg

Mild AR
The Journey to the Vancouver Clinical Pathway

85 y.o. man admitted for elective TF TAVR with GA and TEE

- Traumatic insertion of urinary catheter prolonged anesthesia
- Successful TAVR
- Gross hematuria, continuous bladder irrigation
- Blood transfusions and urosepsis-related complications
- Respiratory failure and pneumonia
- ICU death POD 14

Avoid: Unnecessary interventions

Standardized Clinical Pathways
Lesson Learned: The Goal is to Succeed Every Time!
Standardized Patient and Family Education

Deciding to Have a Transcatheter Aortic Valve Implantation

You are Having a Transcatheter Aortic Valve Implantation
Getting Ready for the Procedure

Going Home After a Transcatheter Heart Valve Procedure
Standardized multidisciplinary practice

Nursing practice standard

TF TAVR physician orders
Standardized criteria driven discharge

- Physician’s order for discharge.

 Consider multidisciplinary consensus for patient’s readiness for discharge.

- Absence of persistent (> 3 hrs) intraventricular conduction delays.

- Absence of laboratory contraindications (i.e., clinically important change in hgb. and eGFR).

- Transthoracic echocardiogram completed and reviewed *(if required).*

- Return to baseline mobilization.

- Confirmed availability of family member or home health care staff *(To stay with patient and assist during the initial 48 hrs after discharge).*

Discharge teaching completed.

Content to cover:

- Vascular access site care
- Follow-up bloodwork and medical appointments
- Indications for emergent care
- Activity and exercise prescription
- Telephone follow-up *(confirmed contact information)*

- Confirmed telephone follow-up plan *(Site contact)*
What Does TAVI Mean?

96 year old former physician

3 hours post TAVI

Asks:

“What does TAVI mean?”

“Totally Awesome Valve Implantation”
Lesson Learned: Length of Stay is a Quality Indicator

Vancouver Program TF TAVR
Change in Median Length of Stay
(2005-2016)
Length of Stay Distribution

N=17,870
Patients with no in-hospital complications

Number of Discharges

1 Day	2 Days	3 Days	4 Days	5+ Days
2,258 | 5,569 | 3,954 | 2,082 | 4,007

34%
>$2,000 Savings per Day of Length of Stay Reduction

Cross Sectional Regression Estimates

Lauck S, Cohen D. TCVT 2018
Streamlining the Way We Care for TAVR Patients

- Avoid GA and intubation
- Avoid TEE
- Avoid neck lines
- Early temporary pacer removal
- Avoid opiates and sedatives
- Bedrest: 4 Hours
- Mobilize on day 0
- Discharge on day 1
The Likelihood of AV Conduction Varies by Valve Type
Time to Onset of Conduction Disturbances in PARTNER 2 S3HR and S3i

- 76% in <24 Hours
- 8% in 24-48 Hours
- 2% in 48-72 Hours
- 13% in 3 - 7 Days

Data on File, Edwards Lifesciences

- BEV: 3.0%
- SEV: 67.3%
- MEV: 95.8%
New Pacemakers by Valve Type at 30 Days

BEV: 6.60%
SEV: 24%
MEV: 32.80%

p < .0001
Late (>30-day to 1 year) Pacemaker Rate by Valve Type

<table>
<thead>
<tr>
<th>Valve Type</th>
<th>Pacemaker Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEV</td>
<td>2.30%</td>
</tr>
<tr>
<td>SEV</td>
<td>2.90%</td>
</tr>
<tr>
<td>MEV</td>
<td>3.10%</td>
</tr>
</tbody>
</table>

$p=0.82$
Late mortality and rehospitalization in patients with new pacemakers following TAVR
New Pacemakers Add Significant Incremental Costs

Adjusted incremental hospital resource utilization associated with new pacemakers following TAVR

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU/CCU</td>
<td>$1,426</td>
</tr>
<tr>
<td>OR/ Cardiology/ Cath Lab</td>
<td>$4,481</td>
</tr>
<tr>
<td>Supplies</td>
<td>$5,055</td>
</tr>
<tr>
<td>Pharmacy/ Lab/ Radiology</td>
<td>$695</td>
</tr>
<tr>
<td>Other</td>
<td>$1,132</td>
</tr>
<tr>
<td>Total</td>
<td>$12,789</td>
</tr>
</tbody>
</table>

FY 2015 MedPAR claims. Note: “Other” includes routine care, therapy services, MRI/CT, ER, Blood, inhalation, anesthesia and other.
New AV Block Has Implications for:

Early
• Temporary pacing
• Mobilization
• EP investigations
• New pacemakers
• Morbidity
• ICU and hospital stay

Late
• Re-hospitalization
• Pacer follow-up, replacements
• LV function
• Late mortality?

Patient Experience
Cost
How we “do TAVR”

How we “care for TAVR patients”

13 North American Centres
N = 411

Vancouver: Dr. D. Wood, Dr. J. Webb, Dr. R. Cook, S. Lauck PhD
Edmonton: Dr. R. Welsh, Dr. B. Tyrell
Calgary: Dr. F. Al-Qoofi
Hamilton: Dr. J. Velianou, Dr. M. Natarajan
Sunnybrook: Dr. H. Wijeyunundera, Dr. S. Radhakrishnan
St. Michael’s: Dr. C. Buller, Dr. M. Peterson
Hôpital du Sacré-Coeur de Montréal: Dr. P. Genereux, Dr. D. Paliwaltis
Centre Hospitalier de L’Université de Montréal: Dr. J.B. Masson
Toronto General: Dr. Eric Horlick, Dr. M. Osten
Institut de Cardiologie de Montréal: Dr. A. Asgar
Columbia University Medical Center: Dr. T. Nazif, Dr. S. Kodali, Dr. M. Leon
Emory University Medical Center: Dr. V. Thourani, Dr. V. Babliratos
Baseline and Procedural Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Overall (N=411)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline characteristics</td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>84 years</td>
</tr>
<tr>
<td>STS score (mean)</td>
<td>4.9</td>
</tr>
<tr>
<td>STS score ≥8%</td>
<td>14.6%</td>
</tr>
<tr>
<td>SAPIEN 3 valve</td>
<td>41.8%</td>
</tr>
<tr>
<td>SAPIEN XT valve</td>
<td>58.2%</td>
</tr>
<tr>
<td>Procedural characteristics</td>
<td></td>
</tr>
<tr>
<td>Procedure Time</td>
<td>45 min</td>
</tr>
<tr>
<td>Local/Conscious Sedation</td>
<td>98.3%</td>
</tr>
<tr>
<td>Local anesthetic only</td>
<td>32.2%</td>
</tr>
<tr>
<td>Conversion to GA</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
Endpoints at 30 Days

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>Overall (N=411) KM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>1.5</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.5</td>
</tr>
<tr>
<td>Readmission</td>
<td></td>
</tr>
<tr>
<td>Cardiac Readmission</td>
<td>9.2</td>
</tr>
<tr>
<td>PAR >mild</td>
<td>3.8</td>
</tr>
<tr>
<td>Permanent Pacemaker Implantation</td>
<td>5.7</td>
</tr>
</tbody>
</table>
Place SAPIEN 3 central marker just above the annular plane to reduced pacemaker rates
Overall (N=411)
High (N=183)
Medium (N=80)
Low (N=148)

Timing of Discharge

- **Next Day**
 - 89.5% (Overall)
 - 92.8% (High)
 - 80.0% (Medium)
 - 90.5% (Low)

30-Day Events

- **Mortality**
 - 1.5%

- **Stroke**
 - 1.5%

Hospital Volume

P = 0.01
SAPIEN 3 Ultra Trial
Up to 4 Sites and a minimum of 20 Patients

Severe, Calcific Aortic Stenosis

Intermediate Risk Assessment by Heart Team and STS ≥ 3 to < 8

Enrollment

TAVR
(SAPIEN 3 Ultra THV and Delivery System)

Follow-up: Discharge, 30 days, 6 months, and annually through 5 years

Primary Endpoint: freedom from all of the following at exit from the procedure room:
• Mortality
• Conversion to surgery
• Moderate or severe paravalvular regurgitation
Edwards SAPIEN 3 Ultra System

Edwards SAPIEN 3 Ultra Valve

Frame and Leaflet Design

• Proven SAPIEN 3 leaflet and frame design

Outer Skirt

• Textured 3-dimensional PET skirt design
• 40% taller skirt
• 14F sheath compatible
The Edwards SAPIEN 3 Ultra System

Edwards SAPIEN 3 Ultra Delivery System
- Redesigned distal end for improved crossability
- On-balloon delivery system removes the need for valve alignment
- Responsive articulation avoids contact with aortic wall

Edwards Axela Sheath
- Next-generation seamless expandable sheath design
- 14F sheath for all valve sizes

Valve Size	Sheath Size
14F 20 mm | 14F
14F 23 mm | 14F
14F 26 mm | 14F
14F 29 mm | 14F
The Edwards SAPIEN 3 Ultra System

• 74 year old male
• Bicuspid aortic valve
 – Area: 640 mm2
 – Mean gradient: 43 mmHg
• Thoracic aortic replacement and LITA graft in 2010
• Plan: 29 mm SAPIEN 3 Valve
SAPIEN 3 Ultra System: Sheath Insertion

Edwards Axela Sheath

Seamless expandable sheath design

14F sheath for all valve sizes, including the largest 29mm valve
SAPIEN 3 Ultra System: Valve Delivery

Edwards SAPIEN 3 Ultra Delivery System

- Redesigned distal end for improved crossability
- On-balloon delivery system removes the need for valve alignment
- Responsive articulation avoids contact with aortic wall
- No lock
SAPIEN 3 Ultra System: Final Result

Final Result

• No paravalvular leak
• Temporary pacemaker removed
• Mobilized that evening
• Next-day discharge
Evolving How We Care for TAVR Patients

- Less invasive
- Reduced hospital stay
- Reduced AV block and pacemakers
- Improved patient experience
- Less cost