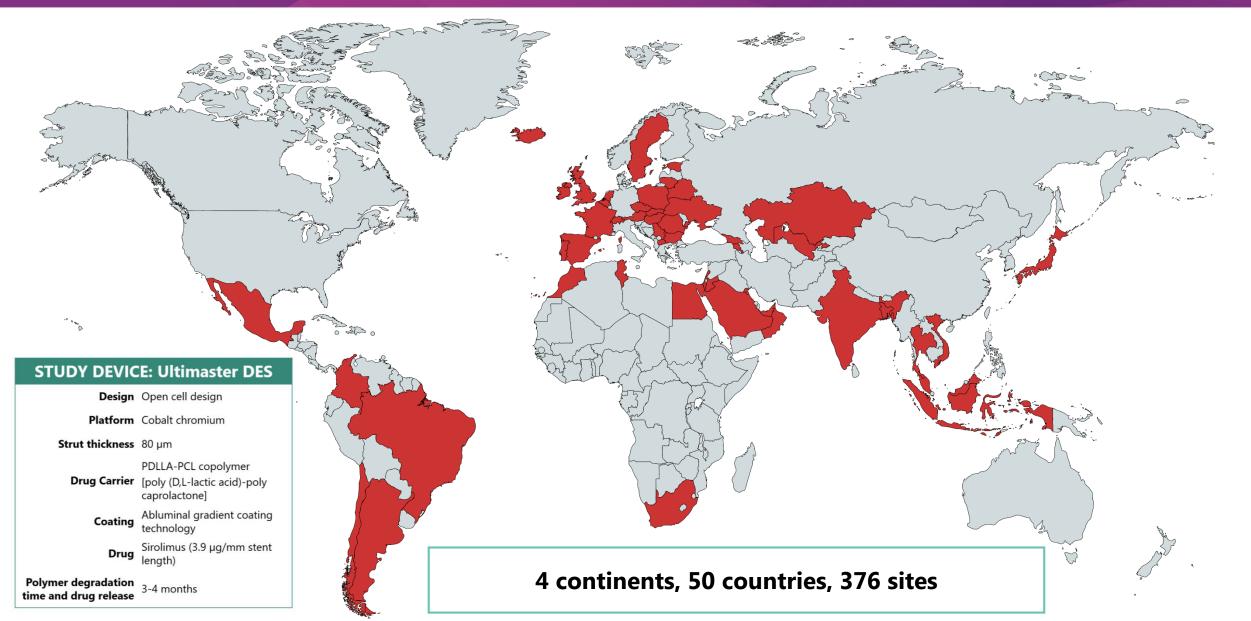
6 euro PCR

Insight into real-world PCI practice and clinical outcomes of patients treated with a new generation DES

Marco Roffi On behalf of e-Ultimaster investigators

University Hospitals, Geneva, Switzerland

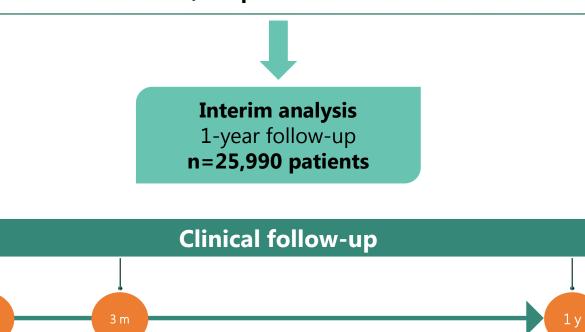
PCRonline.com



Speaker's name : Marco Roffi

✓ I have the following potential conflicts of interest to declare:

Receipt of grants / research supports: Abbott, Biotronik, Boston Scientific, Medtronic, Terumo


e-ULTIMASTER REGISTRY

0 d

STUDY DESIGN AND ENDPOINTS HOW WAS THIS STUDY EXECUTED?

e-Ultimaster registry Study enrolment completed, follow-up ongoing > **37,000 patients enrolled**

An independent Clinical Event Committee reviewed and adjudicated all endpoint-related serious adverse events

Dual antiplatelet therapy (DAPT) was at the discretion of the operator

Primary outcome

Target lesion failure at 1 year (Cardiac death, target vessel MI or clinically driven TLR)

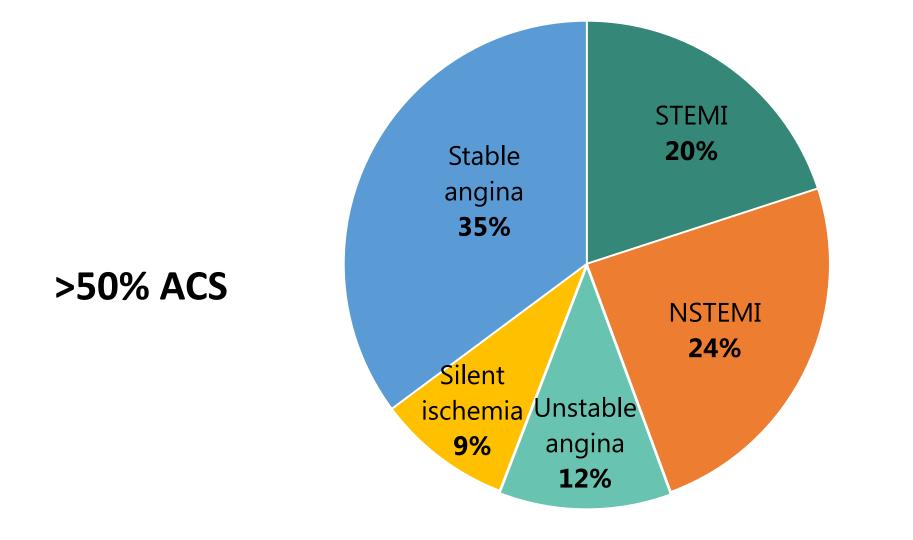
Secondary outcomes

Safety

- Cardiac death/MI
- Stent thrombosis (according to ARC)
- Major vascular and bleeding complications

Efficacy and patient-oriented (composite) endpoints

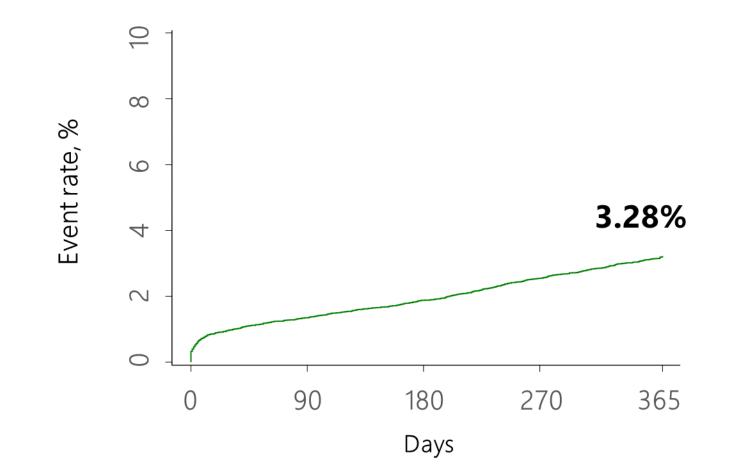
- Target lesion revascularization (TLR)
- Target vessel failure (TVF) (Cardiac death, target vessel MI or clinically driven target vessel revascularization)
- Patient-oriented composite endpoint (POCE) (All-cause death, any MI or any revascularization)


BASELINE CHARACTERISTICS

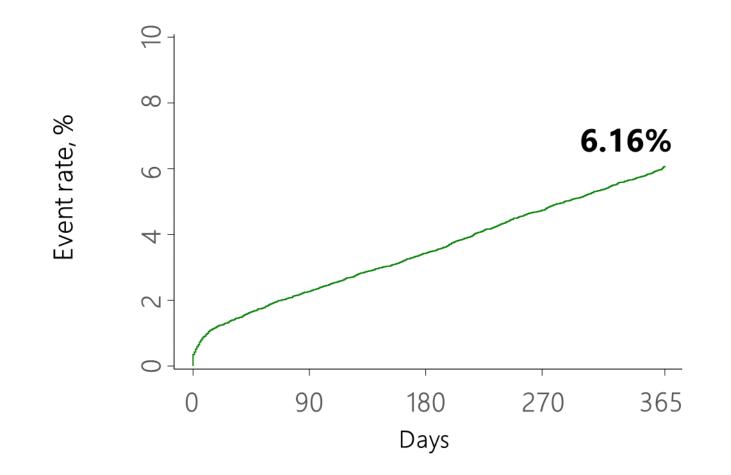
Patient characteristics	N patients = 25,990		
Age, years	64.5±11.2		
Gender, male %	76.6		
Smoking, %	23.4		
Diabetes, %	28.6		
Hypertension, %	64.1		
Hypercholesterolemia, %	56.2		
Renal disease, %	7.3		
Haemodialysis, %	0.9		
Previous MI, %	22.3		
Previous PCI, %	26.0		
Multivessel disease, %	46.8		
Vessel treated per patient, %			
RCA	34.2		
Left main	3.2		
LAD	51.6		
CFX	34.2		
Graft	1.3		

Lesion/procedure characteristics	N patients = 25,990 N lesions = 32,670		
N of lesions identified, n	1.87±1.1		
N of lesions treated, n	1.45±0.8		
Bifurcation, %	13.1		
Chronic total occlusion, %	5.1		
Calcified lesions, %	18.5		
Small vessels (at least 1 stent ≤2.75 mm), %	44.3		
Long lesions (at least 1 stent ≥25mm), %	43.4		
Imaging used (IVUS or OFDI), %	8.4		
N of stent implanted, N	1.47±0.8		
Total stent length, mm	32.6±21.9		
Radial access, %	82.3		

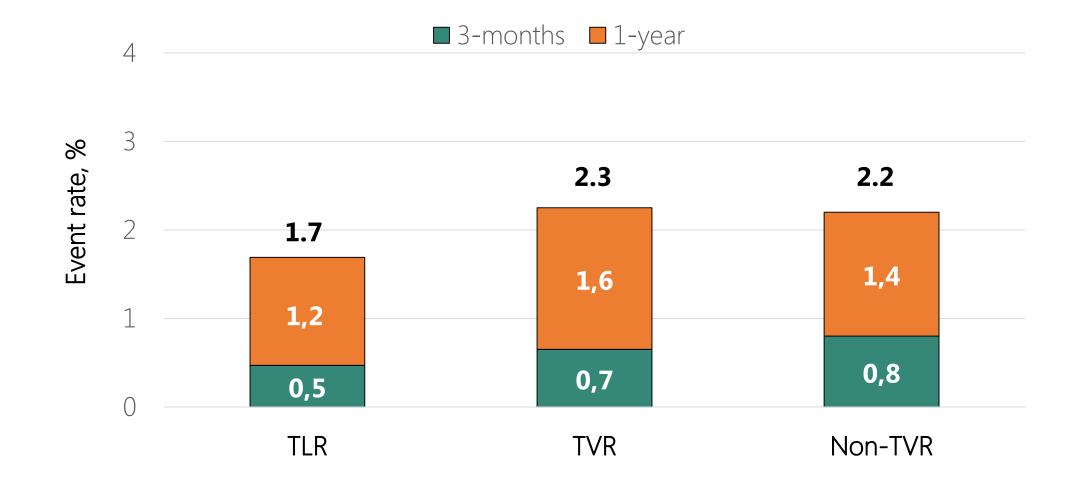
CFX: circumflex; IVUS: intravascular ultrasound; LAD: left anterior descending; MI: myocardial infarction; OFDI: optical frequency domain imaging; PCI: percutaneous coronary intervention; RCA: right coronary artery


BASELINE CLINICAL PRESENTATION

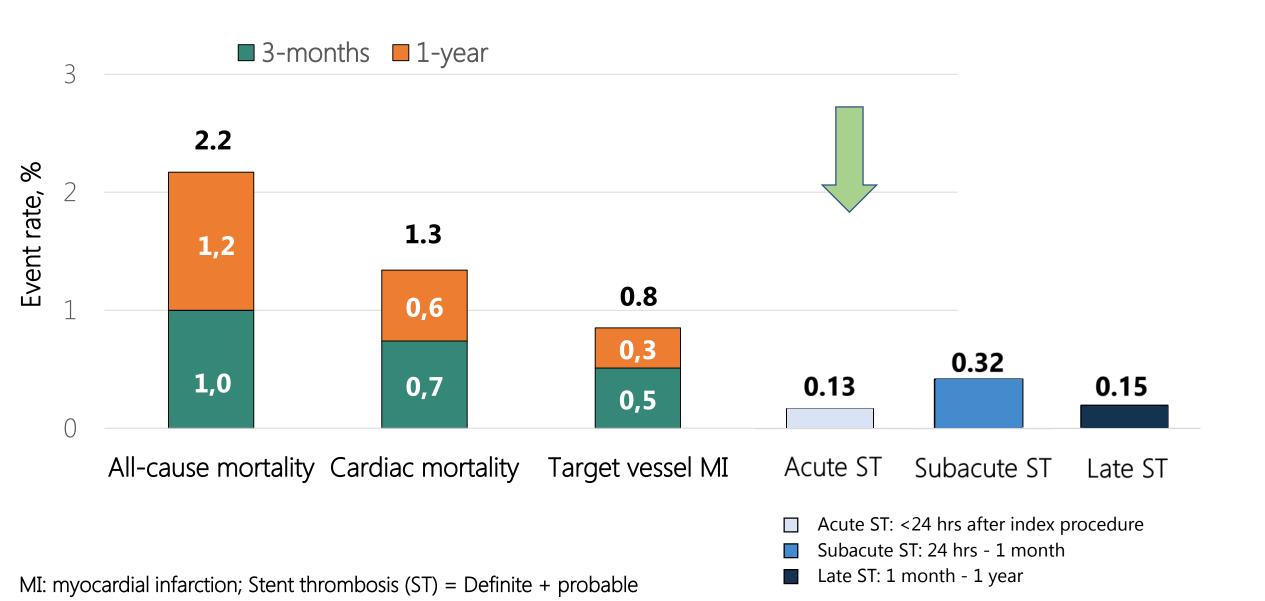
(N)STEMI: (non) ST-elevated myocardial infarction

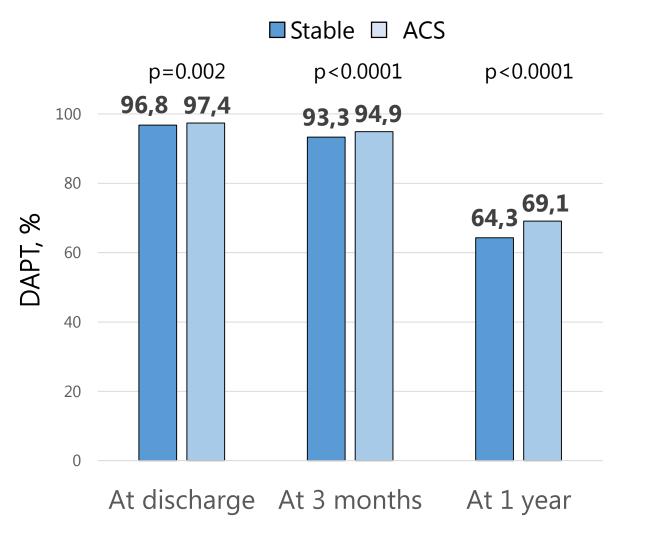


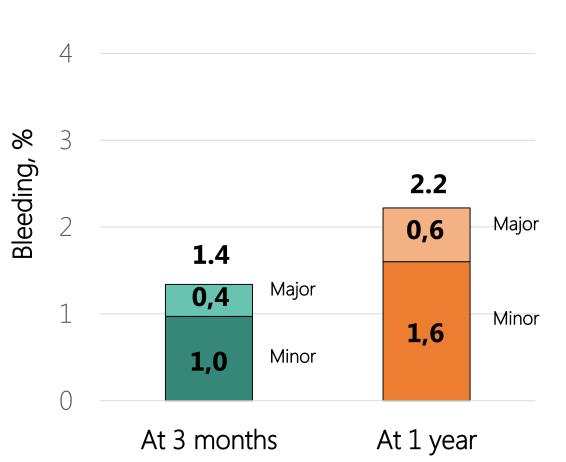
Target lesion failure at 1 year Cardiac death, target-vessel MI or clinically-driven TLR



Patient-oriented composite endpoint (POCE) All-cause mortality, any MI or any coronary revascularization


EFFICACY ENDPOINTS


TLR: target lesion revascularization; (non-)TVR: (non-) target vessel revascularization


SAFETY ENDPOINTS

DUAL ANTIPLATELET THERAPY AND BLEEDING RATE

Stable: stable angina or silent ischemia ACS: acute coronary syndrome: STEMI, NSTEMI or unstable angina

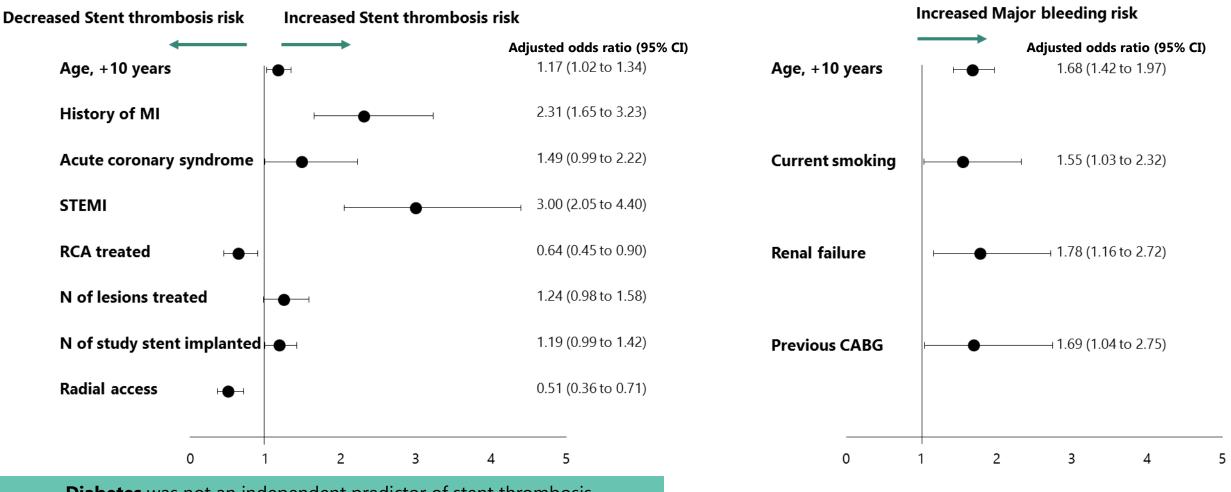
Bleeding was defined according to Bleeding Academic Research Consortium (BARC): minor bleeding BARC type 1-2 major bleeding BARC type 3-5

euro

INDEPENDENT PREDICTORS OF 1-YEAR TFL

Decreased TLF risk Increased TLF risk Age, +10 years Body mass index, +1 kg/m² **Current smoking Diabetes Renal failure** Acute coronary syndrome STEMI **History of PCI History of CABG** Number of lesions, +1 Left main treated Graft treated Bifurcation Type C lesion N of study stents implanted, +1 **Radial access** 2 3 n

Results based on stepwise logistic regression, with covariates considered for entering the model:


Adjusted odds ratio (95% CI) 1.24 (1.16 to 1.33) 1.01 (1.003 to 1.02) 1.18 (0.99 to 1.42) 1.45 (1.26 to 1.67) 1.65 (1.36 to 2.00) 1.22 (1.04 to 1.42) 1.36 (1.13 to 1.65) 1.49 (1.28 to 1.73) 1.28 (0.98 to 1.65) 1.17 (1.10 to 1.25) 1.59 (1.22 to 2.08) 1.68 (1.12 to 1.52) 1.39 (1.16 to 1.66) 1.20 (1.04 to 1.40) 1.23 (1.15 to 1.32) 0.79 (0.67 to 0.93)

TLF: target lesion failure Cardiac death, target-vessel MI or clinically-driven TLR

CABG: coronary artery bypass graft; PCI: percutaneous coronary intervention; STEMI: ST-elevated myocardial infarction; TLF: target lesion failure

Age, gender, body mass index, diabetes, hypertension, hypercholesterolemia, smoking, previous PCI, renal impairment, acute coronary syndrome, multi-vessel disease, N lesions identified, N lesions treated, vessel treated, N of stents implanted, length of stents implanted, in-stent restenosis, chronic total occlusion, bifurcation, long lesions, small vessels, calcification, AHA/ACC lesion classification, radial access

PREDICTORS OF DEFINITE/PROBABLE STENT THROMBOSIS AND MAJOR BLEEDING AT 1 YEAR

Diabetes was not an independent predictor of stent thrombosis Adjusted OR: **1.16 (0.83 to 1.63; p=0.38)**

CABG: coronary artery bypass graft; RCA; right coronary artery; STEMI: ST-elevated myocardial infarction

Results based on stepwise logistic regression, with covariates considered for entering the model:

euro

PCR

Age, gender, body mass index, diabetes, hypertension, hypercholesterolemia, smoking, previous MI, previous PCI, renal impairment, acute coronary syndrome, multi-vessel disease, N lesions identified, N lesions treated, vessel treated, N of stents implanted, length of stents implanted, in-stent restenosis, chronic total occlusion, bifurcation, long lesions, small vessels, calcification, AHA/ACC lesion classification, radial access

Interim analysis of one of the largest, prospective, world-wide registries including >50% ACS patients and with independent event adjudication showed remarkable efficacy and safety of ULTIMASTER-based PCI, with in particular a target lesion failure and definite or probable stent thrombosis rates well below 5% and 1%, respectively.

- Why? To assess efficacy and safety of the Ultimaster stent
- What? Ultimaster: thin strut, co-cr, sirolimus-eluting stent, abluminal bioresorbable polymer
- How? Over 25,000 all-comer PCI, followed up at 3 months and 1 year, independent event adjudication
- What are the results?

Excellent efficacy and safety performance with in particular low rates of TLF and definite/probable ST

• Why is this important?

Advances in stent design of newer-generation DES might contribute to improved PCI efficacy and safety

On behalf of all e-Ultimaster investigators and participating sites

e-Ultimaster top-enrollers

Albert Schweitzer Ziekenhuis	Netherlands	Dr F. Kauer	CHR Orleans Cardiologie	France	Dr O. Bizeau
The Almaty City Heart Center	Kazakhstan	Dr O. Sakhov	Hospital General Castellón	Spain	Dr P. Baello
Amphia Ziekenhuis	Netherlands	Dr A. Ijsselmuiden	Catharina Ziekenhuis	Netherlands	Dr W. Toninol
Jeroen Bosch Ziekenhuis	Netherlands	Dr J. Van Eck / Dr J. Polad	Hôpitaux Universitaires de Genève	Switzerland	Dr M. Roffi
Royal Stoke University Hospital	United Kingdom	Dr M. Mamas	Pavlodar Regional Cardiologic Center	Kazakhstan	Dr R. Baisebenov
North-Estonia Medical Center	Estonia	Dr P. Laanmets	Hospital Universitario de Guadalajara	Spain	Dr J. Balague Requena
Hospital San Juan De Dios	Chile	Dr A. Puentes	Meander MC	Netherlands	Dr F. Spano
Groupement mutualiste de Grenoble	France	Dr J. Monsegu	Hospital Meixoeiro-Medtec	Spain	Dr A. Iñiguez Romo
MBAL Sveta Karidad, Plovdiv	Bulgaria	Dr D. Karageorgiev	Hopital Privé Jacques Cartier Massy	France	Dr T. Hovasse
New Cross Hospital	United Kingdom	Dr S. Munir	Hospital Grant Benavente	Chile	Dr L. Perez
Worcestershire Acute Hospitals NHS Trust	United Kingdom	Dr H. Routledge	Clinique Internationale de Marrakech	Morocco	Dr F. Chaara
University Hospital Galway	Ireland	Dr J. Crowley	Hospital de Cruces-Barakaldo	Spain	Dr J. Alcibar
Royal Sussex Hospital, Brighton	United Kingdom	Dr D. Hildick Smith	GKNM Hospital	India	Dr R. Abhaichand
National Heart Foundation Hospital and Research Institute	Bangladesh	Dr F. Tun-Nesa	Universitets Sjukhuset I Örebro	Sweden	Dr O. Fröbert
James Cook University Hospital	United Kingdom	Dr D. Austin	Medisch Spectrum Twente	Netherlands	Dr C. von Birgelen

6 euro PCR

PCRonline.com