S PURO PCR

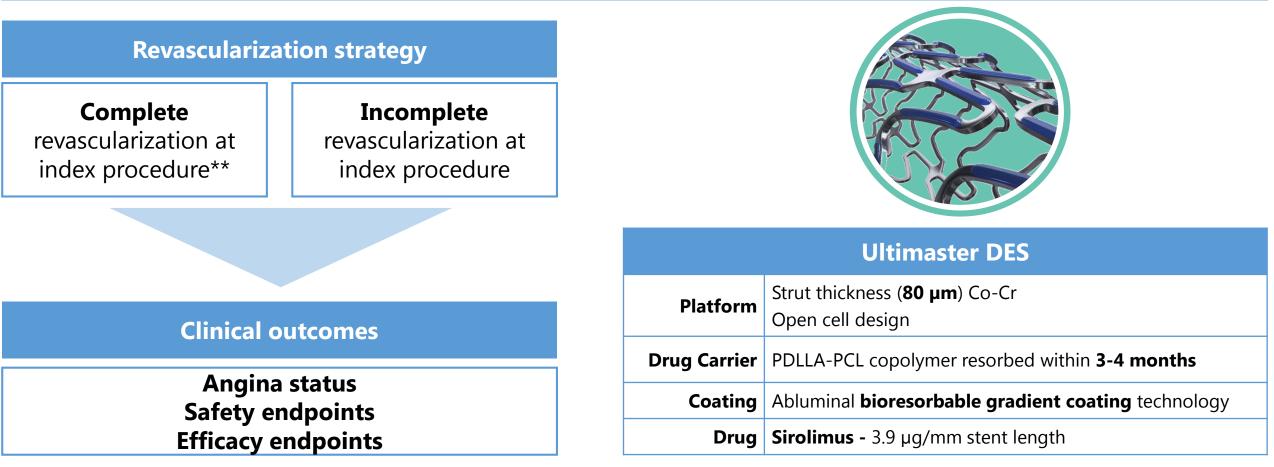
Revascularization strategy of multivessel PCI – data from a worldwide registry

David Hildick-Smith On behalf of e-Ultimaster investigators

PCRonline.com

☑ I have the following potential conflicts of interest to report:

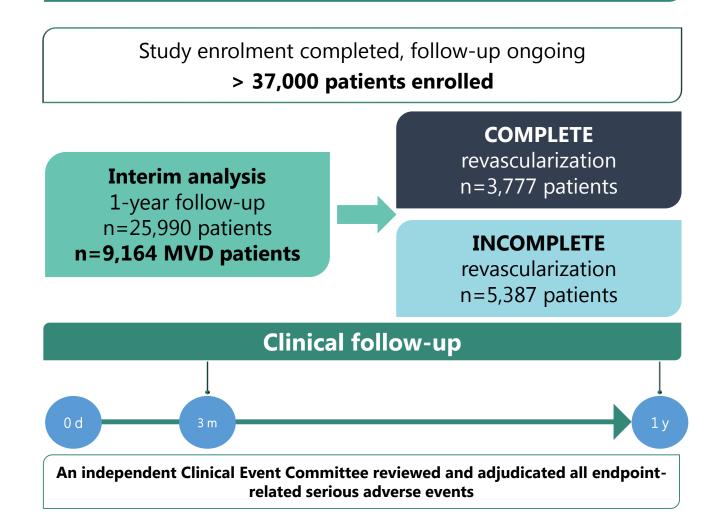
Advisory/Consultancy to Terumo



- Patients with multivessel coronary artery disease (MVD) are at increased risk of adverse clinical outcomes following PCI
- More frequent use of PCI to treat MVD
- The value and timing of complete revascularization over incomplete revascularization is uncertain in patients with MVD
- (Current ESC guidelines do not give the highest class of recommendation regarding completeness of myocardial revascularization)

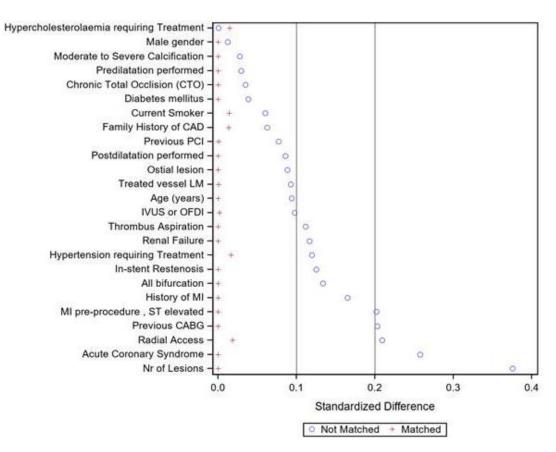
STUDY METHODS WHAT DID WE STUDY?

Revascularization strategy in multivessel disease patients* treated with contemporary DES



*Multivessel disease is defined as the presence of a >50% diameter stenosis in more than 1 coronary artery **Also includes procedures which occurred after the initial (index) procedure within the period before discharge from hospital

STUDY DESIGN HOW WAS THIS STUDY EXECUTED?



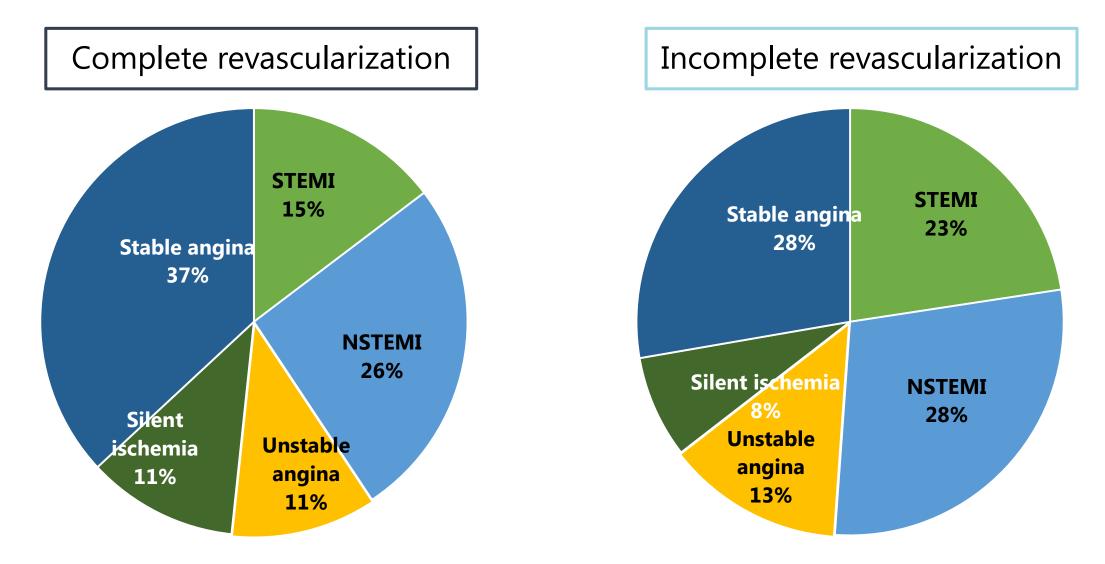
STATISTICAL METHODOLOGY

Inverse probability of treatment weights (IPTW) methodology

- The Inverse Probability of Treatment Weights (IPTW) method creates balanced groups for comparison of subgroups that are not randomized and as a consequence, do not allow for direct statistical comparison due to the resulting imbalance in covariates (baseline characteristics).
- A **logistic regression model**, containing **all covariates that require balancing** as predictive factors and subgroup of interest as outcome, predicts the probability for each subject of belonging to the subgroup he is in ('**propensity scores**'), based on the array of covariates (see graph).
- The IPTW are then the **inverse of these propensity scores (1/PS)**, and can be used as **weight to balance the subgroups**, i.e. the covariates become similar between the subgroups.
- By performing **weighted statistical analyses on the outcomes**, using these inverse propensity weights, the results can be interpreted for the subgroup comparison, **balanced for the covariates included in the initial logistic regression** model that calculates the propensity scores.
- On of the advantages of this methodology is that all patients can be included in the weighted analysis (as opposed to 1 to 1 matched analyses, where only part of the population is included).

- Covariates to calculate the propensity score include
- The y-axis gives the covariates included in the propensity score; the x-axis gives the standardized difference between complete and incomplete revascularization group before and after weighted analyses

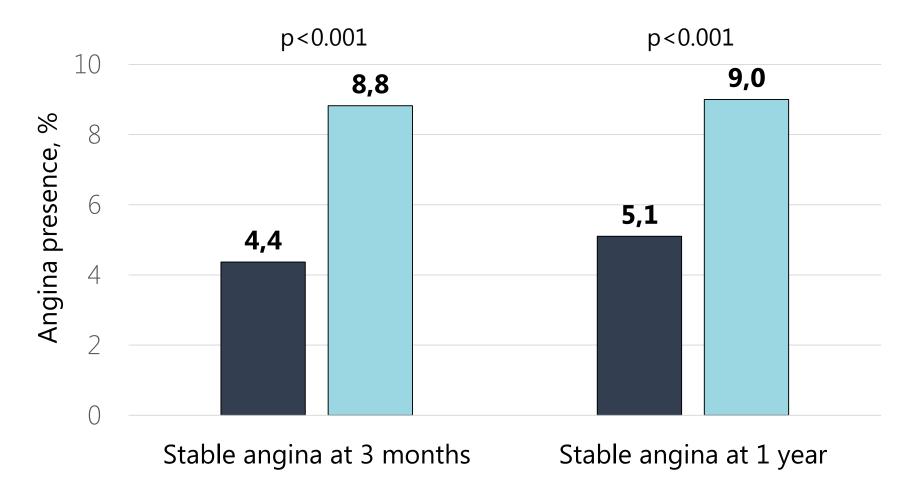
BASELINE PATIENT CHARACTERISTICS


	Complete revascularization n=3,777	Incomplete revascularization n=5,387	P-value
Age, years	64.8±11.2	65.9±11.0	<0.001
Gender, male	78.0	77.5	0.56
Current smoking	23.8	21.3	0.006
Diabetes	30.9	32.8	0.07
Hypertension	65.5	71.1	<0.001
Hypercholesterolemia	59.0	59.1	0.97
Renal disease	7.4	10.7	<0.001
Haemodialysis	1.2	1.1	0.76
Previous MI	21.8	29.1	<0.001
Previous PCI	25.6	29.0	<0.001

Unadjusted data; values are mean±SD or percentages

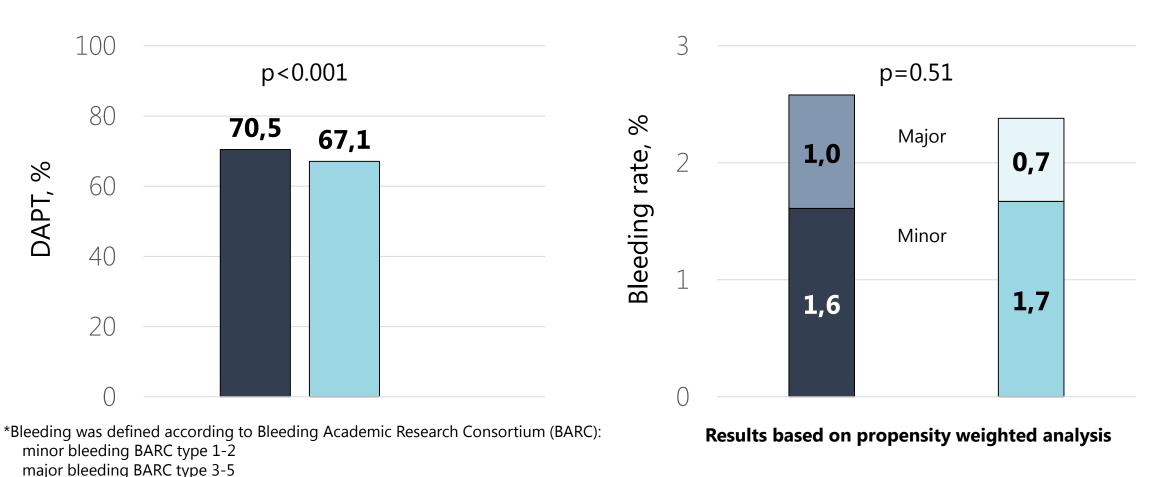
BASELINE LESION/PROCEDURE CHARACTERISTICS

	Complete revascularization n=3,777	Incomplete revascularization n=5,387	P-value
Bifurcation per patient	18.4	13.4	<0.001
Left main per patient	6.5	4.4	< 0.001
N of lesions treated per patient, n	2.4±0.7	1.4±0.7	< 0.001
N of stents implanted per patient, n	2.7±1.1	1.7±0.9	< 0.001
Total stent length per patient, mm	45.8±27	32.5±20.6	< 0.001
Type C lesions (AHA/ACC) per lesion	25.1	28.3	< 0.001
Moderate/severe calcification per lesion	18.0	21.7	< 0.001
Direct stenting per lesion	39.5	32.1	< 0.001
Post-dilatation per lesion	39.0	43.1	<0.001
Imaging per patient	5.1	3.4	<0.001

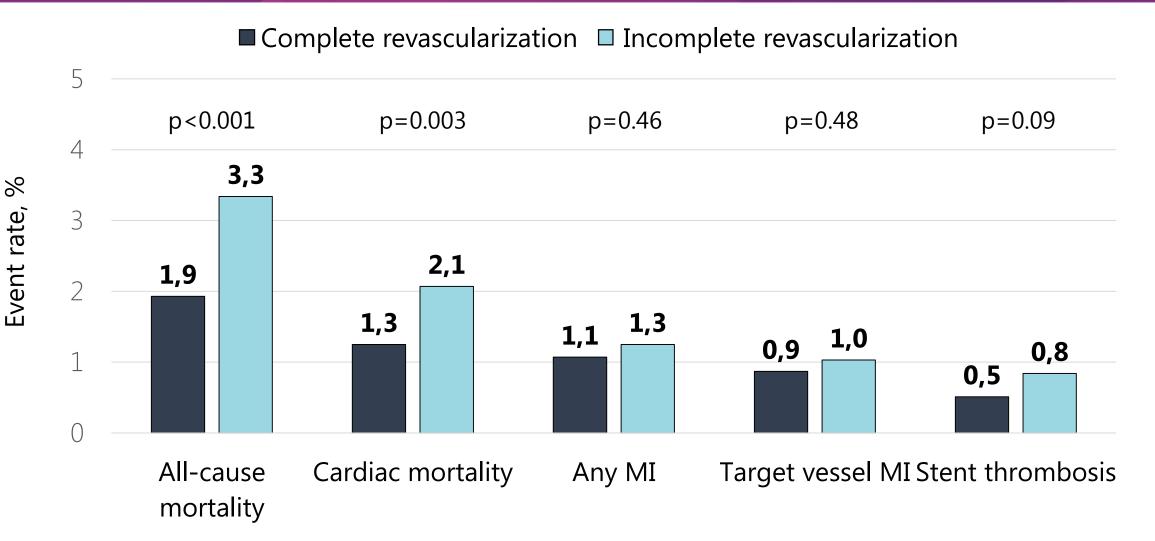

Unadjusted data; values are mean±SD or percentages

(N)STEMI: (non) ST-elevated myocardial infarction

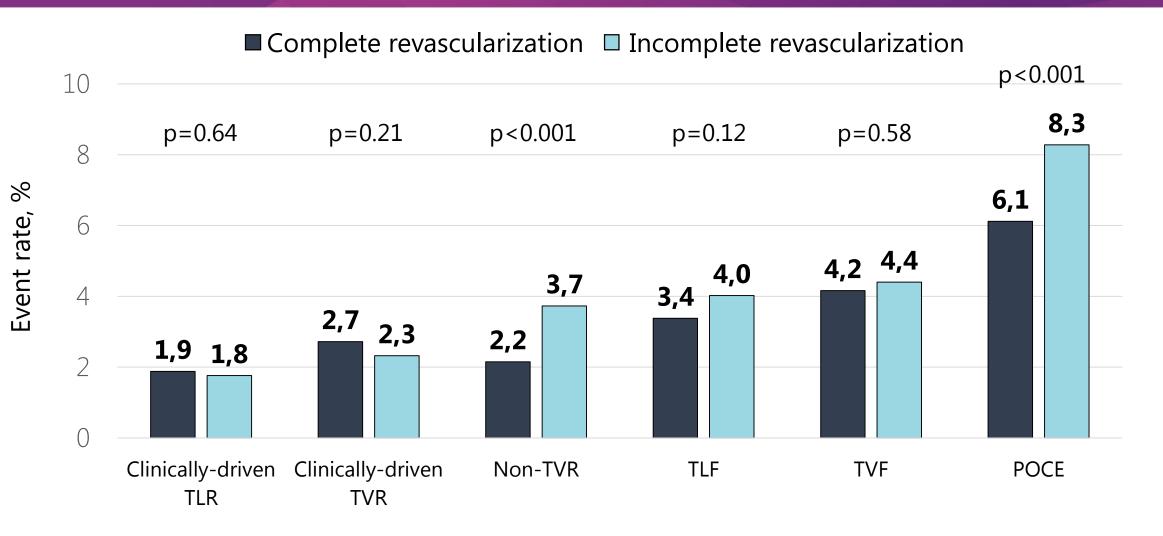
■ Complete revascularization ■ Incomplete revascularization



■ Complete revascularization ■ Incomplete revascularization


1-year DAPT

1-year bleeding*



SAFETY ENDPOINTS AT 1 YEAR

Results based on propensity weighted analysis

MI: myocardial infarction; Stent thrombosis: Definite + probable stent thrombosis

Results based on propensity weighted analysis

POCE: patient-oriented composite endpoint (all-cause mortality, any MI, any revascularization); **TLF**: target lesion failure (cardiac death, TV-MI and clinically driven target lesion revascularization); **TVF**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel revascularization; **TLR**: target lesion revascularization; **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel revascularization; **TLR**: target lesion revascularization; **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel revascularization; **TLR**: target lesion revascularization; **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel revascularization; **TLR**: target lesion revascularization; **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel revascularization; **TLR**: target lesion revascularization; **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel revascularization; **TLR**: target lesion revascularization; **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel revascularization; **TLR**: target lesion revascularization; **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel revascularization; **TLR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel failure); **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel failure); **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel failure); **TVR**: target vessel failure (cardiac death, TV-MI, clinically driven target vessel failure); **TVR**: target vessel

- Data reported from a subgroup of a large, prospective, world-wide registry on PCI treatment of multivessel CAD with a contemporary DES
- Less angina at 1 year with complete revascularisation
- Lower mortality at 1 year with complete revascularisation
- Physician-directed selective use of complete revascularization results in good clinical outcomes

On behalf of all e-Ultimaster investigators and participating sites

e-Ultimaster top-enrollers

Albert Schweitzer Ziekenhuis	Netherlands	Dr F. Kauer	CHR Orleans Cardiologie	France	Dr O. Bizeau
The Almaty City Heart Center	Kazakhstan	Dr O. Sakhov	Hospital General Castellón	Spain	Dr P. Baello
Amphia Ziekenhuis	Netherlands	Dr A. Ijsselmuiden	Catharina Ziekenhuis	Netherlands	Dr W. Toninol
Jeroen Bosch Ziekenhuis	Netherlands	Dr J. Van Eck / Dr J. Polad	Hôpitaux Universitaires de Genève	Switzerland	Dr M. Roffi
Royal Stoke University Hospital	United Kingdom	Dr M. Mamas	Pavlodar Regional Cardiologic Center	Kazakhstan	Dr R. Baisebenov
North-Estonia Medical Center	Estonia	Dr P. Laanmets	Hospital Universitario de Guadalajara	Spain	Dr J. Balague Requena
Hospital San Juan De Dios	Chile	Dr A. Puentes	Meander MC	Netherlands	Dr F. Spano
Groupement mutualiste de Grenoble	France	Dr J. Monsegu	Hospital Meixoeiro-Medtec	Spain	Dr A. Iñiguez Romo
MBAL Sveta Karidad, Plovdiv	Bulgaria	Dr D. Karageorgiev	Hopital Privé Jacques Cartier Massy	France	Dr T. Hovasse
New Cross Hospital	United Kingdom	Dr S. Munir	Hospital Grant Benavente	Chile	Dr L. Perez
Worcestershire Acute Hospitals NHS Trust	United Kingdom	Dr H. Routledge	Clinique Internationale de Marrakech	Morocco	Dr F. Chaara
University Hospital Galway	Ireland	Dr J. Crowley	Hospital de Cruces-Barakaldo	Spain	Dr J. Alcibar
Royal Sussex Hospital, Brighton	United Kingdom	Dr D. Hildick Smith	GKNM Hospital	India	Dr R. Abhaichand
National Heart Foundation Hospital and Research Institute	Bangladesh	Dr F. Tun-Nesa	Universitets Sjukhuset I Örebro	Sweden	Dr O. Fröbert
James Cook University Hospital	United Kingdom	Dr D. Austin	Medisch Spectrum Twente	Netherlands	Dr C. von Birgelen

6 euro PCR

PCRonline.com