euro PCR

A serial optical frequency domain imaging study of early and late vascular responses of sirolimus-eluting stent with bioresorbable polymer for treatment of STEMI and stable angina pectoris patients - Final results of **MECHANISM-ULTIMASTER**

Yoshihiro Morino, MD, Tomonori Itoh, MD; Takumi Kimura, MD; Yoshiro Tukiyama, MD; Tatsuo Kikuchi, MD; Munenori Okubo, MD; Takatoshi Hayashi, MD; Takayuki Okamura, MD; Shoichi Kuramitsu, MD; Takashi Morita, MD; Toshiro Shinke, MD; Hiromasa Otake, MD, On the behalf of MECHANISM ULTIMASTER Investigators

EAPCI European Society of Cardiology

PCRonline.com

Speaker's name : Yoshihiro Morino

☑ I have the following potential conflicts of interest to declare:

Participation in a company sponsored speaker's bur: Terumo corporation Receipt of grants / research supports: Terumo corporation

MECHANISM-ULTIMASTER Backgrounds and Aim

 The Ultimaster[®] stent is a new reduced-dose sirolimus-eluting stent (SES) that uses an abluminal bioresorbable coating on a thin-strut (bioresorbable polymer; BP- SES).

- Although bioresorbable polymer technology may theoretically promise improved healing of treated segments, clinical trials to characterize their effects on the vessel remain limited.
- The time course of early and convalescent vascular healing has not been fully elucidated in STelevation myocardial infarction (STEMI) or stable coronary artery disease (CAD).
- Accordingly, the aim of this study was **to assess early and late vascular healing in response** to BP-SES in the treatment of patients with STEMI and stable CAD using optical frequency domain imaging (OFDI).

Study outline, Methods, and Analyzable cases

euro

MECHANISM ULTIMASTER Baseline characteristics

6	euro
201	PCR

	STEMI (n=103)	Stable CAD (n=101)	P value
Patient characteristics			
Age, yo	66.2 ± 10.8	68.0 ± 9.6	0.19
Gender, Male, n (%)	84 (81.6)	73 (72.3)	0.12
Diabetes mellitus, n (%)	51 (49.5)	47 (46.5)	0.67
Dyslipidemia, n (%)	80 (77.7)	81 (78.6)	0.66
Hypertension, n (%)	71 (68.9)	81 (78.6)	0.065
Smoking, n (%)	64 (62.1)	46 (45.5)	0.017
30 ≤ eGFR < 60, eGFR <30, n (%)	24/1 (23.3/0.97)	31/1 (31.3/1.0)	0.49
Peak CK value, IU/L	180 (36-3520)	91 (22 – 304)	< 0.001
Lesion and procedural characteristics			
LAD, LCX, RCA, n (%)	28 (27.2) /17(16.5) /58 (56.3)	73 (36.6)/ 22 (21.8) /42 (41.6)	0.11
Used stent number, n	1.21 ± 0.41	1.20 ± 0.45	0.83
Used stent diameter, mm	3.23 ± 0.69	3.02 ± 0.65	0.021
Total stent length, mm	29.6 ± 13.2	30.1 ± 14.3	0.83
Final minimal lumen diameter, mm	2.57 ± 0.45	2.58 ± 0.44	0.73
Final % diameter stenosis. %	13.69 ± 7.82	11.13 ± 10.13	0.051

Incidence of all cause death and cardiac event at 12 Months

o l euro

	STEMI (n=103)	Stable CAD (n=101)	HR	P value
All cause death	2 (1.9)	1 (1.0)	1.19 (0.90-1.57)	0.22
DOCE	7 (6.8)	2 (2.0)	1.25 (0.94-1.66)	0.12
Cardiac death	2 (1.9)	0 (0)	1.20 (0.91-1.59)	0.19
Target-vessel MI	4 (3.9)	0 (0)	1.04 (0.79-1.37)	0.79
Clinically-driven TLR	5 (4.9)	2 (2.0)	1.22 (0.92-1.62)	0.16
Stent thrombosis	1 (1.0)	0 (0)	1.05 (0.79-1.38)	0.76

MECHANISM ULTIMASTER **Result 2: %uncovered strut by OFDI (primary endpoint)**

euro

MECHANISM ULTIMASTER **Result3 : Average In-stent Tissue Thickness by OFDI**

euro

PCR

Result 4: Serial Changes of Peri-strut low-intensity area (PLIA) score : Surrogate marker of <u>immature neointima or peri-strut inflammation</u>

Grade **1** – only around the struts

Grade **2** – in part of the neointima

Grade 3 in the entire neointima (most immature)

- Although the strut-coverage in the early-phase after BP-SES implantation were slightly delayed in STEMI patients compared to stable-CAD patients, those differences diminished over time, almost disappearing by 12 months.
- The average neointimal thickness of the two cohorts were comparable at 12 months.
- Elevated PLIA scores, considered a sign of immature neointima or peri-strut inflammation, were observed in the early phases but significantly improved in both cohorts within 12 months.
- In conclusion, owing to the combination of these multifactorial improvements, qualitatively and quantitatively consistent neointimal stent coverage was achieved by the 12-month timepoint in both pathogenetic groups following BP-SES implantation, suggesting long-term lesion stability of this bioresorbable polymer technology.