

How to select three-vessel disease patients eligible for PCI and guide the treatment by angiography-derived physiology

Prof. P.W.Serruys
Prof Javier Escaned
Prof Faisal Sharif
Prof Yoshi Onuma

Panel members

Azfar Zaman

Helge Moelmann

Joanna Wykrzykowska

Chatmaster: Mattia Lunardi

Potential conflicts of interest

Speaker Name : Patrick Serruys

I have the following potential conflicts of interest in this field to report:

Consultancy for SMT, Novartis, Xeltis, Philips and Meril life sciences

Speaker's name: Javier Escaned

I have the following potential conflicts of interest in this field to report:

Speaker at educational events by Abiomed, Abbott, Boston Scientific, Medis and Philips

Speaker's name: Faisal Sharif

I have no potential conflicts of interest in this field to report:

Speaker's name: Yoshi Onuma

I have no potential conflicts of interest in this field to report:

SESSION OBJECTIVES

- 1. To identify the right patient for three-vessel PCI (precision medicine)
- 2. To select the lesions to be treated by angiography-derived physiology (quantitative flow ratio)
- 3. To appreciate how IVUS/OCT can improve the outcome of Multivessel stenting

PART I

Clinical data – Angiography – SYNTAX Score

Demographic and clinical history

• 76 years old, BMI 31.8 kg/m²

Variable	Yes	No
Male	X	
Former smoker	X	
Hypertension	X	
Dyslipidaemia	X	
Peripheral vascular disease	X	
Family history of CAD	X	
COPD		X
Diabetes		X
Chronic kidney disease		X

• Therapy: ACEi, B-Blocker, Ca++ channel blocker, statin

Clinical presentation

Symptoms

- Recent TIA (right eye blurring + dizziness), 2 months before
- Stable angina: CCS class II for 3 months

Examinations

- ECG: Sinus bradycardia + 1 AV block
- Echocardiography: LVEF 60%, mild lateral wall hypokinesis
- Lab: eGFR 68 ml/min, hs-TnT 18 ng/L (ULN: 14 ng/L)

Coronary angiography - LCA

Coronary angiography - RCA

Question poll

Which lesion/s do you consider significant?

Coronary	Yes	No
LAD		
L-Cx		
RCA		

SYNTAX II

Variable		Value
Anatomical SYNTAX S	Score	14
Age		76
Creatine clearance (r	mL/min)	68
LVEF (%)	Indication	60
Left Main		No
Gender		Male
COPD	PCI or CABG	No
PVD		Yes
SYNTAX Score II - PCI		42.8
4-year mortality - PCI		18.7 %
SYNTAX Score II - CABG		47.3
4-year mortality - CABG		26.0 %

SYNTAX Score 2020 (background slide)

PART II

Quantitative Flow Ratio

QFR analysis of RCA lesion

QFR analysis of LAD lesion

QFR analysis of L-CX lesion

PART III

Stenting procedure

PCI to RCA

Pre-dilatation SC 2.5x15 mm

Stenting Supraflex Cruz 3.0x24 mm

Post-dilation NC 3.5x20 mm

PCI to LAD

Pre-dilatation SC 2.5x15 mm

Stenting Supraflex Cruz 3.0x20 mm

Post-dilation NC 3.5x8 mm

Supraflex Cruz stent design

Cell design

Supraflex Cruz has largest cell area

The strut patterns of **Orsiro** and of distal **Promus PREMIER Select's** were <u>denser</u>, <u>thereby resulting in</u> smaller stent cells.

Cell design of the stent platforms expanded at nominal pressure. The same scale has been applied for the five images. <u>Cells are represented in **green**</u>

Disclaimer: Supraflex Cruz is a trademark of Sahajanand Medical Technologies Ltd. or its affiliates. Xience is trademark of the Abbott Group of Companies. Promus Premier Select is a trademark of Boston Scientific Corporation or its affiliates. Resolute Integrity is a trademark of Medtronic, Inc. Orsiro is a trademark of Biotronik SE & Co.

Ref: Öner et al. Eur J Med Res (2021) 26:121 https://doi.org/10.1186/s40001-021-00595-7

Supraflex Cruz stent design

Cell Perimeter (mm)

Supraflex Cruz has the largest cell perimeter **19.10±0.11 mm**

Orsiro displayed the lowest cell perimeter 10.97±0.55 mm

Resolute Integrity exhibited the highest standard deviation of cell perimeter (14.88 ± 1.31 mm) which quantifies the strut pattern's irregularity level post-deployment.

Disclaimer: Supraflex Cruz is a trademark of Sahajanand Medical Technologies Ltd. or its affiliates. Xience is trademark of the Abbott Group of Companies. Promus Premier Select is a trademark of Boston Scientific Corporation or its affiliates. Resolute Integrity is a trademark of Medtronic. Inc. Orsiro is a trademark of Biotronik SE & Co.

Ref: Öner et al. Eur J Med Res (2021) 26:121 https://doi.org/10.1186/s40001-021-00595-7

FFR to L-CX

Intra-venous regadenoson 400 mcg bolus

uQFR to Circ (background slide)

How and when to use IVUS for stent optimisation during multivessel PCI?

Javier Escaned MD PhD Hospital Clínico San Carlos Madrid / Spain

IVUS guidance in MVD PCI: what makes the difference?

- More extensive atherosclerosis
- Larger and more complex plaques (Ca2+)
- High prevalence of target vessel failure post PCI
- More complex patient profile

IVUS guidance in MVD PCI: what makes the difference?

High atheroma burden

Selection of adequate landing zone for stent → DES length selection

Longer lesions

Assessment of adequate DES expansion and apposition.

Vessel calcification

Adequate lesion preparation before stenting (CB, RA, OAS, IVL)

Complex patient profile

HBR: decrease risk of ST if DAPT/SAPT stopped by achieving large MSA.

CKD: decrease risk of AKI by reducing contrast use.

Procedural characteristics in SYNTAX II

	Syntax PCI arm (n=315)	SYNTAX II trial (n=454)	Difference (95% CI)
N of Lesions (Anatomical Syntax score)	4.3±1.3	4.2±1.2	-0.2 [-0.34, 0.02]
N of Lesions intended to be treated	3.7±1.7	3.5±1.0	-0.2 [-0.5, 0.1]
iFR/FFR pre-procedure / per patient	NA	96.2%	
iFR/FFR pre-procedure / per lesion	NA	75.8%	
N of Treated Lesions	3.2±1.5	2.6±1.0	<u>-0.6 [-0.9,-0.4]</u>
Mean N of stents per patient	4.0±2.0	3.8±2.0	-0.2 [-0.5, 0.1]
Mean stent length (mm)	18.8±7.0	24.4±9.2	<u>5.6 [5.0, 6.2]</u>
Total stent length (mm)	74.9±41.9	92.9±53.9	<u>18.0 [10.8, 25.2]</u>

Key message: less lesions treated (iFR/FFR) but longer stents used (IVUS) in SYNTAX II

LCX

Impact of IVUS guidance in long lesion PCI: IVUS-XPL trial

No. at risk PCI

Angiography-guided 700 673 660 643 624 IVUS-guided 700 671 665 654 641

Hong et al. JAMA 2015;314:2155-63

Impact of minimal stent area post PCI in MVD: SYNTAX II

Cumulative incidence of TLR according to post-PCI minimal stent area terciles

Katagiri Y et al. Catheter Cardiovasc Interv. 2019 Mar 1;93(4):E225-E234.

IVUS guidance in MVD PCI: what makes the difference?

In patients undergoing MVD PCI, use of IVUS may improve long-term procedural outcome through:

- Better PCI planning: plaque preparation, selection of DES landing zones and stent length.
- Optimisation of DES implantation to achieve large MSA.
- Addressing safety issues related to patient risk profile (HBR, CKD)

PART IV

IVUS post-stenting - procedural outcome - follow-up

IVUS to RCA

Distal reference maximum lumen area

Minimum stent area

Proximal reference maximum lumen area

Final angiographic result of RCA stenting

Post PCI to RCA QFR results

IVUS to LAD

Additional post-dilation NC 4.0x12 mm

Final IVUS to LAD

9.7 mm²

8.3 mm²

9.9 mm²

Successful result:

MSA > 80% (5.6 mm²) of nominal stent area (7.0 mm²)

Minimum stent area

Proximal reference maximum lumen area

Final angiographic result of LAD stenting

Post PCI to LAD QFR results

Discharge and Follow-up

- Discharge after 1 day on DAPT (aspirin + prasugrel)
- Aspirin stopped at 1 month
- Prasugrel alone for 11 months
- Prasugrel stopped at 1 year and aspirin lifelong

Uneventful follow up up to 18 months

Have we answered our key questions? Key points to remember:

- 1, To identify the right patient for three-vessel PCI (precision medicine)
 Use of SYNTAX Score 2020 that predicts 5-years MACCE and Mortality
 as well as 10-years mortality.
- 2, To select the lesions to be treated by angiography-derived physiology (quantitative flow ratio)

Treat the lesion responsible for a QFR of the vessel <0.08. Treat a delta QFR >0.06 Post-PCI, QFR should be \geq 0.91

3, To appreciate how IVUS/OCT can improve the outcome of Multivessel stenting

Thumb's rule:

- Minimal Stent Area (MSA) with IVUS: 5.5mm²
- MSA with OCT: 4.5mm²
- Relative MSA with respect to Proximal and Distal Reference: 80%

Status of the Multivessel TALENT Trial

Status of the Multivessel TALENT Trial

Recruitment & Site Activations

PCRonline.com